

Black Hole Accretion in the Nearby Universe: Evidence for Down-Sizing

Elena Gallo | MIT Kavli Institute

X-rays: AGN vs. `inactive' galaxies

X-rays from inactive galaxies:

ROSAT effectively sensitive down to 1e40 erg/sec for nearby galaxies

Chandra bridges the gap between active (>1E-2 L_Edd) and (formally) inactive galaxies

Pellegrini 2005; Soria et al 2006

Black hole vs nuclear star clusters

- ACS Virgo Cluster Sample
 (ACSVCS Cote' et al 04)
- Nuclear star clusters
 increasingly prominent
 moving down the mass
 function > might replace
 black holes
- X-ray perspective:
 enhanced contamination
 from X-ray binaries

Ferrarese et al. 2006 (also Wenher & Harris 2006, Kormendy et al 2009)

AMUSE-Virgo: the survey

 Targets 100 early type galaxies which compose the HST ACS Virgo Cluster Survey (ACSVCS, Cote' et al 04)

Duty cycle of super-massive black hole (highly sub-Eddington) activity
 Local black hole occupation fraction

AMUSE-Virgo: the survey

- > 84 new targets with Chandra ACIS-S (454 ksec) + 16 archival (>1Msec) complete down to L_Edd for a 3 M_Sun object
- 57 new targets with Spitzer MIPS
 (9.5 hr) + 43 archival
- HST ACS g- & z-band archival images (ACSVCS)

AMUSE: black holes, star clusters & LMXBs

Contamination from Low-Mass X-ray Binaries (LMXBs) addressed *quantitatively*: each nuclear X-ray source Lx is assigned a prob. (1-Px) to be an active black hole, where Px is the chance probability of having a LMXB \geq Lx within the ACIS PSF, based on X-ray luminosity function of LMXBs:

- ➢ in the FIELD (Gilfanov 2004) in the absence of nuclear star clusters
- > in GLOBULAR CLUSTERS (Sivakoff et al. 2007) in the presence of a nuclear cluster

Gallo et al 2008, 2010

AMUSE-Virgo: Nuclear X-ray census

- > 32/100 show a nuclear X-ray source
- > 51/100 show a massive nuclear star cluster
- > 6/100 show both a nuclear X-ray source and a star cluster
- > 24-34% of the galaxies host an active super- massive black hole (95%
 C.L.)
- > ACTIVE FRACTION as a function of M_* , M_{BH}

AMUSE-Virgo: Active black hole fraction

Active fraction raises with host stellar mass

(Gallo et al 2008, 2010; see Ho et al 1997 Kaufmann et al 2003, Decarli et al 2007, Seth et al 2008, 2010)

AMUSE-Virgo: Power vs. BH Mass

AMUSE-Virgo: L_x/L_{Edd} completeness

Active fraction raises with host stellar mass

HOWEVER

Dealing with `Eddington-limited' sub-samples results in no evidence that the fraction of active black holes depends on host mass

AMUSE-Virgo: Bayesian approach

Assume: Log($\mathcal{L}_{X,38}$)=A + B log($\mathcal{M}_{BH,8}$)

Intrinsic scatter σ_0 0.44 dex error on M_{BH} Uniform prior on BH mass function

A=1.0 \pm 0.1 B=0.38 \pm 0.13 σ_0 =0.46 \pm 0.08 dex

AMUSE-Virgo: Accretion Down-sizing

Gallo et al 2010 (ApJ, in press)

AMUSE-Virgo: Summary

- > 32/100 nuclear X-ray sources ; 51/100 nuclear clusters ; 6/100 hybrids
- Bona fide active black holes (after LMXB contamination assessment):
 between 24-34% host an accreting black hole. Strong lower limit to occupation fraction in the local universe.
- > AVERAGE L_X/L_{EDD} DESCREASES WITH INCREASING M_{BH}
- NEXT: results from Spizter MIPS: absorption, dust reprocessing etc.
 (Leipski et al. in prep, Paper III) + AMUSE-Field approved Large Program (Cycle
 11, PI Gallo) on 100 field spheroidals, to investigate environmental effects.