The stellar cluster at the center of the Milky Way

Rainer Schödel, IAA-CSIC

CMO 2010, ESO, Garching, 22 June 2010

Nuclear Stellar Clusters

Nuclear Star Clusters (NSCs)

Nuclear Star Clusters (NSCs)

van der Marel et al. (2007), image from the observations of Bresolin et a. (2005)

Nuclear Star Clusters (NSCs)

NSCs are detected *unambiguously* in 50%-75% of spiral, spheroids ("dwarf ellipticals"), and S0 galaxies. Their actual rate of occurrence in these galaxies may be close to 100%.

NSCs appear to be absent in elliptical galaxies (i.e. products of major mergers: coreless and extra-light ellipticals).

see also, e.g., Phillips+ 1996; Carollo+ 1998; Matthews+ 1999; Böker+ 2002, 2004; Balcells+ 2003; Ferrarese+ 2006; Kormendy+ 2009

Nuclear star clusters

- Half-light radii typically 2-5 pc
- Masses of 10⁶ 10⁷ M_☉
- **Complex star formation histories**: evidence for frequent and repetitive star formation episodes, most recent generation often younger than 10⁸ yr
- NSCs may obey similar scaling relationships with properties of host galaxies as do massive black holes

see, e.g., review by T. Böker (2008)

The Nuclear Stellar Cluster of the Milky Way

see also: Nishiyama+ (2008, 2009); Gosling+ (2009); Stead & Hoare (2009)

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

The Center of the Milky Way Galaxy NASA / JPL-Caltech / S. Stolovy (Spitzer Science Center/Caltech)

Studies on stellar number and/or light surface density of NSC find $\rho(r) \propto r^{-1.5...-2}$ at distances $r > \sim 10$ "

e.g., Becklin & Neugebauer, 1968 - $\rho \propto r^{-1.8}$ (bulge reference field subtracted); *Catchpole+*, 1990; *Eckart+*, 1993 - $\rho \propto r^{-1.8}$ (SHARP source counts, inner 15"); *Genzel+*, 1996 - $\rho \propto r^{-1.8}$ (inner 20", late-type stars); *Haller+* 1996; *Genzel+*, 2003; *Schoedel+*, 2007 - $\rho \propto r^{-1.75}$ (ISAAC+NACO, no bulge correction); *Graham & Spitler*, 2009 - $\rho \propto r^{-2.0...2,7}$ (2MASS light density, bulge correction); *Oh* +, 2009 - $\rho \propto r^{-1.5}$ (various models and data)

Some help from X-ray observations...

Some help from X-ray observations...

Some help from X-ray observations...

Radius (arcmin)

IRSF/SIRIUS Ks Nishiyama et al. (2006, 2009)

IRSF/SIRIUS Ks Nishiyama et al. (2006, 2009)

IRSF/SIRIUS Ks Nishiyama et al. (2006, 2009)

Kinematics

6000 proper motions within 1 pc of Sgr A*, data from Schoedel+ (2009) publicly available.

Based on IO images taken between 2002 and 2008.

Schödel, Merritt, & Eckart (2009); see also Trippe et al. (2008)

Kinematics

Schödel, Merritt, & Eckart (2009); see also Trippe et al. (2008)

Kinematics

Sagittarius A*

Schödel, Merritt, & Eckart (2009); see also Trippe et al. (2008)

Rotation of the NSC

see Schödel, Merritt, & Eckart (2009, A&A)

Rotation of the NSC

see Schödel, Merritt, & Eckart (2009, A&A)

The **MWNC rotates**. Combined with the known complex star formation history, this supports the *in situ* formation scenario.

8

Rotation of the NSC

The **MWNC rotates**. Combined with the known complex star formation history, this supports the *in situ* formation scenario.

The **exact rotation law** of the MWNC is **not clear**.

8

Rotation of the NSC

The **MWNC rotates**. Combined with the known complex star formation history, this supports the *in situ* formation scenario.

The **exact rotation law** of the MWNC is **not clear**.

8

Rotation of an NSC has also been found in NGC 4244 by Seth+ (2008).

Velocity dispersion at the Galactic Center

Velocity dispersion at the Galactic Center

Velocity dispersion at the Galactic Center

Velocity dispersion at the Galactic Center

Overall properties of the NSC

Shape:

- King/Sérsic/broken power-law models have been used
- spherically symmetric?
- ρ (light, number density) \propto r^{-1.8} found in most analyses
- power-law slope changes on scales of 5-10 pc

Star formation:

- significant overabundance of supergiants and bright giants as well as presence of young massive stars
- starburst-like activity in the central I pc about 4-6 Myr ago

<u>Mass, total</u>: $3 \pm 1.5 \times 10^7 M_{\odot}$ (Launhardt+ 2002) <u>Mass, central pc</u>: $1 \pm 0.5 \times 10^6 M_{\odot}$ (Schödel+ 2009) <u>Size</u>: half light radius of 3-5 pc (large uncertainties) <u>BH radius of influence</u>: ~1-2 pc <u>Density</u>: ~1.5×10⁵ M_☉ pc⁻³ at r=1 pc, ~1×10^{6...8} M_☉ pc⁻³ at r=0.1 pc <u>Rotation</u>: The NSC rotates (Trippe et al., 2008).

Overall properties of the NSC

Shape:

- King/Sérsic/broken power-law models have been used
- spherically symmetric?

•	- (1 + 1) + (1) + (1 + 1) + (1) + (1) + (1) + (1) + (1) + (1) +
•	The overall properties of MW NSC are
۲t	similar to extragalactic ones.
•	However, there are still major
as •	uncertainties concerning its shape and
- 1	dynamics.
M	ass, total: 3 ± 1.5 ×10′ M⊙ (Launhardt+ 2002)
Mass, central pc: $I \pm 0.5 \times 10^6 M_{\odot}$ (Schödel+ 2009)	
Size: half light radius of 3-5 pc (large uncertainties)	
BH radius of influence: ~1-2 pc	
<u>Density</u> : ~1.5×10 ⁵ M _☉ pc ⁻³ at r=1 pc, ~1×10 ⁶⁸ M _☉ pc ⁻³ at r=0.1 pc	
<u>Rotation</u> : The NSC rotates (<i>Trippe et al.,</i> 2008).	

Is there a cusp around the SMBH Sagittarius A*?

ISAAC/VLT 1.3 + 2.09 μm 20,000 point sources (seeing limited, FWHM ~0.4")

Sgr A*

ISAAC/VLT 1.3 + 2.09 μm 20,000 point sources (seeing limited, FWHM ~0.4")

Sgr A*

$\begin{array}{l} \text{ISAAC/VLT 1.3 + 2.09} \\ \text{20,000 point sources} \\ \text{(seeing limited, FWHM} \end{array} \begin{array}{l} \text{NACO/VLT, 2.2 } \mu\text{m} \\ \text{adaptive optics, ~0.06" FWHM} \\ \text{10,000 point sources} \\ \text{(mag}_{\text{K}} \leq 17.5) \end{array}$

ISAAC/VLT 1.3 + 2.09 μ NACO/VLT, 2.2 μm 20,000 point sources (seeing limited, FWHM

adaptive optics, ~0.06" FWHM 10,000 point sources (mag_K \leq 17.5)

Count stars and correct for completeness (due to confusion) and for extinction...

5

Stellar surface number density

Stellar surface number density

Young stars at the Galactic Center

Two recent star formation events in central pc: ~100 Myr and ~4 Myr ago (e.g., Krabbe et al. 1995).

Young, massive stars in central 0.5 pc:

•O/B dwarfs within ~20 mpc of Sgr A* ("S-stars", "paradox of youth", e.g. Ghez et al., 2003: Eisenhauer et al., 2005 and others)

• ~100 O/B supergiants/WR stars within 0.5 pc of Sgr A* (e.g. Genzel et al., 2003; Paumard et al., 2006)

• at least 50% of the young stars move within a disc (e.g. Paumard et al., 2006; Lu et al., 2008)

• surface number density of young stars rises steeply toward Sgr A* (e.g., Paumard+ 2006; Lu+ 2009)

Young stars at the Galactic Center

Classifying stars at the GC: Broad-band

main problems:

- high and variable extinction
- only H,K,L observations (narrow range of stellar colors)
- FOV of spectroscopy very small

see Schödel et al. (2010, A&A)

Classifying stars at the GC: Broad-band

see Schödel et al. (2010, A&A)

Classifying stars at the GC: Narrow band

Buchholz, Schödel, & Eckart (2009, A&A)

Classifying stars at the GC: Narrow band

Buchholz, Schödel, & Eckart (2009, A&A)

Classifying stars at the GC: Narrow band

Buchholz, Schödel, & Eckart (2009, A&A)

n(r) of old stars $\neq n(r)$ of young stars

n(r) of old stars $\neq n(r)$ of young stars

Spectroscopic studies of late-type stars at the GC

Spectroscopic studies of late-type stars at the GC

Spectroscopic studies of late-type stars at the GC

Decreasing density of old stars toward Sgr A*.

 $\rightarrow \gamma < 1.0$ with >99% probability (Do et al., 2009)

→ There is no observable cusp, there may be even a hole.

Where is the stellar cusp at the GC?

<u>Destroyed</u>: e.g., by infall of IMBH up to a few 10⁹ yr ago

• Not yet formed:

necessary time scale may be longer than ~10¹⁰ yr (Merritt 2009)

• Invisible:

giants could be destroyed by collisions with MS stars and BHs in dense cluster center; however, mechanism probably not effective enough (Dale+ 2009)

• Are our assumptions correct?

Continuous star formation, cluster not old enough?, cluster embedded in nuclear bulge, fraction of disrupted star accreted onto BH?, etc.

What do we observe at the GC?

Mean mass [M_o]

What do we observe at the GC?

