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The disk(s) in the Galactic center
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~ 100 massive young stars found in the central
parsec, age: 6 x 10° yr; formation is a puzzle:
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- formation in situ from a disk?

- disruption of an infalling cluster?

- implied star-formation rate is so high that it
must be episodic

y [arcsec]
S

* line-of-sight velocities measured by Doppler
shift and angular velocities measured by
astrometry > five of six phase-space
coordinates

- many of velocity vectors lie close to a plane, 0
implying that many of the stars are in a disk
(Levin & Beloborodov 2003)

Paumard et al (2006), Lu et al. (2009), 5
Bartko et al. (2009, 2010), ... x [arcsec]




Observations: Warped disk

» Strong evidence for a warped disk (best-fit normals in inner and outer
image differ by 609%) - the "clockwise disk"

» Disk thickness ~10¢; rms eccentricity 0.3

- Disk is less well-formed at larger radii

* Weaker evidence for a second disk between 3" and 7" (the
“counterclockwise disk")

» The two disks have the same age Bartko et al. (2009)
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Evolution of subparsec scale disks

Gaseous (or stellar) disks get warped due to
- GR frame dragging (Bardeen & Petterson 1975)
- Radiation pressure (Petterson 1977)
- Tori, rings (Nayakshin 2005, Subr et al. 2009)
- resonant relaxation in NGC 4258 (Bregman & Alexander 2009)

Isolated self—graviTaTing disks (also e.g. Hunter & Toomre 1969, Toomre 1983, etc.)
- Self-gravity alone cannot explain observed inclinations (Cuadra et al. 2008)
- Equilibrium solution can be warped by 120 deg (Ulubay-Siddiki et al. 2008)

Warps due to infalling gas (Nayakshin & Cuadra 2005, Hobbs & Nayakshin 2009)

Two massive inclined stellar disks warp and dissolve due to mutual torques
(Lockmann & Baumgardt 2009)

Binary companion, IMBH would warp the disk (e.g. Papaloizou et al. 1998, Yu &
Tremaine 2003, Yu et al. 2007)

Our approach:
- Does resonant relaxation warp a thin stellar disk?
- What is the final configuration in statistical equilibrium?
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Resonant relaxation in dense stellar systems

* on timescales longer than the orbital
period each stellar orbit can be thought
of as an eccentric wire

- orbits precess due to the gravity of the
spherical star cluster > axisymmefric
disk or annulus

» orbits are specified by semi-major axis,
eccentricity, and orbit normal

- conserved for each star:
- energy (semi-major axis)

- angular momentum magnitude
(eccentricity)

- each annulus exerts steady force on all
other annuli, leading to secular evolution
of the orbit normals

- orbit normals change in time

Rauch & Tremaine (1996)



Vector resonant relaxation

Eccentricity + semimajor axis conserved
Torques between axi-symmetric disks

-  Parallel configuration stable
- Inclined orbits exert torques

1.  "Thermal” equilibrium?
Monte Carlo Markov Chain simulation
Analytic solutions (Maier-Saupe model)

2. Time evolution?
numerical simulation (symplectic integrator)
analytic models (Laplace-Lagrange model) )

Interesting analogy: liquid crystals
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Thermodynamic equilibrium
for vector resonant relaxation

- mutual forques can lead to relaxation of orbit normals (angular
momenta)

- self-gravitating system in ferms of the orientation of orbits
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- interaction energy between stars i and j

N
— 1
H = Emim].F(ai,aj,ei,ej,cosHij)
i,j=l

l;t/ / \ —~ Angle between orbit normals

eccentricities
masses semi-major axes L. . Lj

sHl.j =
| L (] L ]

- Canonical ensemble: phase space probability density is
E

f(L,Ly,....Ly) = Cexp(—ﬁ)
* What is temperature?
* More straightforward:
- microcanonical ensemble with fixed "energy” and angular momentum



Thermodynamic equilibrium from resonant
relaxation - toy model #1

N
H = —%Czcos2 6,

- drastic simplification assuming equal
masses, semi-major axes,
eccentricities and neglecting all
harmonics > |=2

* this is the Maier-Saupe model for
the isotropic-nematic phase ftransition
in liquid crystals

» analytic mean field solution verified
by experiments

Boltzmann

tant
T=T,.,=0.0743 CN/k «cer=ian

the only equilibrium is isotropic. Below
T,.i+ there is a phase transition to a
disk

- above temperature

i 7=I
Kocsis & Tremaine (2010)
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Thermal equilibrium

orbit normals as a function of radius

/:)u‘rer
radius

iInner
radius

*Include all spherical
harmonics in energy

- initially thick disk
Stars:
* same mass,
eccentricity

* conserve total
energy, but doesn't
conserve angular
momentum

Monte Carlo Markov Chain simulation Kocsis & Tremaine (2010)




Time evolution

Solve
numerically

- same mass
- same radius

- same eccentricity
N = 800

Is there chaotic
mixing?

Symplectic integrator (conserves L., exactly) Kocsis & Tremaine (2010)




Time evolution of a Thin Disk
- toy model #2

- Secular forces between disk stars "exactly”

- Small inclinations and eccentricities ej,Ij < |aj-ak|/aj

- N stars with masses m;, semi-major axes q;, inclinations I;, nodes
»+  Torques from the cluster as a background

- This system is described by the Laplace-Lagrange Hamiltonian

(GA;q+pAsR) where (gip) = m{™(GM a;)*¥,(; sn-;cos-;)

=1

Diagonalize: > harmonic oscillator
*  Normal modes (oscillate independently)
»  Spherical cluster as external torque

- stochastic (Gaussian)

*  Predict power spectrum of normal modes
after time t = 6 Myr

Kocsis & Tremaine, arXiv:1006.0001



Normal modes of a Thin Disk
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3 oscillation period

Conclude:

* Long wavelength
modes are slowest

- all but 4 modes
have already
saturated after
6Myr




Growth of perturbations

Solve equations of motion for normal mode amplitudes

Three timescales
- Normal mode frequencies
- Correlation time of coherent torques

- Age of disk (integration time) - £
Normal modes evolve differently in various limiting cases

Linear
growth

small t

1] E——

Harmonic
oscillation

intermediate t

]3] ——

Random
walk

large t




Result for temporally coherent
perturbations

Power Spectrum

disk cross sections (example)
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Prediction: Long wavelength normal modes dominate

Kocsis & Tremaine, arXiv:1006.0001




Time evolution

Two components:

- spherical cluster
with light stars
(N, my=1)

- disk with massive
stars
(N2, m; = 4)

Total mass
dominated by
spherical cluster
(N1 : Nz =1:20
N; + N, = 5000)

Symplectic integrator (conserves L, . exactly) Kocsis & Tremaine (2010)




Vector resonant relaxation governs the evolution
of stellar disks in galactic nuclei

- Chaotic

- relaxes tfoward thermal equilbrium

Star cluster warps the disk
- Long wavelength modes dominate

Thermal equilibrium:
- mass segration in inclinations

- thin corotating and counterrotating disks of massive
stars

- phase transition at a given radius
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Observations: Warped disk

Bartko et al. (2009)
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Thermodynamic equilibrium from resonant
relaxation - toy model #1

- Liquid crystals
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Thermodynamic equilibrium from resonant
relaxation - toy model #1b

N Gmm,

2
H=—%E L cos 0,
42 max(a,,a,)

- Simplified interaction: only | = 2 harmonic, circular orbits

* now allow different masses and semimajor axes

* equipartition of energy :

- effective temperature T ~ <E> / kg ~ 1060 K

- massive objects go into a thin disk, light objects go spherical

* objects with large semimajor axes have a smaller effective mass

- disk becomes spherical in the outside, thin in the inside



Laplace-Lagrange model
* Hamiltonian: H(q.p) =p Ap+q' Aq

- Diagonalize: H(P.Q)=P'AP+ Q"'AQ
* Harmonic oscillator + external stochastic torque.
Equation of motion:

N-—-1 N-—-1
j=0 j=0
» Assume correlation function of external torque

Lij(t,t) =Tij(|t — ') = (fgi (1) fo5 (1)) = (fpi(t) fpi (t)))

* Predict probability of normal mode amplitude after time t.
 Example: coherent torque phase

) 2 i ; } Sill2 Ait .
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Thermodynamic equilibrium from resonant
relaxation

The right way to do it:

- model is specified by masses m;, semi-major axes q;, eccentricities e;, and
initial orientations of orbit normals

* interaction energy between stars i and j is H;;=mm;f(a;,a,.e;,e;,cos 6;)
where 6, is the angle between the orbit normals. Evaluate f numerically as
an expansion in P(cos 6;) (can be done once and for all at the start)

O
Hij = - a? E O/IJ Sijl B(O) H(COb Qij)
Kocsis & Tremaine (2010)
a<
— 1 —
where |(¢;; = Py and |Siji = Sij[(eia €j>

l
X | 1
For non-overlapping orbits |Siji = ;—iipl—lo(?j)PH-l(X?j) Xi
27 < ?




Thermodynamic equilibrium from resonant

relaxation

The right way to do it:

- model is specified by masses m;, semi-major axes q;, eccentricities e;, and

initial orientations of orbit normals

* interaction energy between stars i and j is H;;=mm;f(a;,a,.e;,e;,cos 6;)
where 6, is the angle between the orbit normals. Evaluate f numerically as
an expansion in P(cos 6;) (can be done once and for all at the start)

Mim;

a

1) 1=0

Hij = —G S Z O/ij Sijl B(O)Z B(COb 81’]’)

Kocsis & Tremaine (2010)

1. Evaluate interaction energy
numerically and use Markov
Chain Monte Carlo to find
equilibrium state

2.

Dynamical simulation:
Numerical integration of
Hamilton's equation*

* for N-annuli Hamiltonian above




