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The disk(s) in the Galactic center 

•   ~ 100 massive young stars found in the central 
parsec, age: 6 x 106 yr; formation is a puzzle: 

•  formation in situ from a disk? 

•  disruption of an infalling cluster? 

•  implied star-formation rate is so high that it 
must be episodic  

•  line-of-sight velocities measured by Doppler 
shift and angular velocities measured by 
astrometry !  five of six phase-space 
coordinates 

•  many of velocity vectors lie close to a plane, 
implying that many of the stars are in a disk 
(Levin & Beloborodov 2003) 

Paumard et al (2006), Lu et al. (2009), 
Bartko et al.  (2009, 2010), … 

0.1 pc 



Observations: Warped disk 

Inside (1”-3.8’’) 
0.03-0.13 pc 

Middle (3.5’’-7”) 
0.13-0.27 pc 

Outside (7”-12’’) 
0.27-0.47 pc 

Bartko et al.  (2009) 

•  Strong evidence for a warped disk (best-fit normals in inner and outer 
image differ by 60deg) – the “clockwise disk” 
•  Disk thickness ~10deg; rms eccentricity 0.3 
•  Disk is less well-formed at larger radii 
•  Weaker evidence for a second disk between 3” and 7” (the 
“counterclockwise disk”)  
•  The two disks have the same age 



Evolution of subparsec scale disks 

•  Gaseous (or stellar) disks get warped due to 
–  GR frame dragging (Bardeen & Petterson 1975) 
–  Radiation pressure (Petterson 1977) 
–  Tori, rings (Nayakshin 2005, Subr et al. 2009) 
–  resonant relaxation in NGC 4258 (Bregman & Alexander 2009) 

•  Isolated self-gravitating disks (also e.g. Hunter & Toomre 1969, Toomre 1983, etc.) 
–  Self-gravity alone cannot explain observed inclinations (Cuadra et al. 2008) 
–  Equilibrium solution can be warped by 120 deg (Ulubay-Siddiki et al. 2008) 

•  Warps due to infalling gas (Nayakshin & Cuadra 2005, Hobbs & Nayakshin 2009) 

•  Two massive inclined stellar disks warp and dissolve due to mutual torques 
(Lockmann & Baumgardt 2009) 

•  Binary companion,  IMBH would warp the disk (e.g. Papaloizou et al. 1998, Yu & 
Tremaine 2003, Yu et al. 2007) 

•  Our approach: 
–  Does resonant relaxation warp a thin stellar disk? 
–  What is the final configuration in statistical equilibrium? 



Timescales 

•  Disk Age: 

•  Vector Resonant Relaxation: 

•  Pericenter precession 

•  Orbital time 



Resonant relaxation in dense stellar systems 

•   on timescales longer than the orbital 
period each stellar orbit can be thought 
of as an eccentric wire 

•  orbits precess due to the gravity of the 
spherical star cluster ! axisymmetric 
disk or annulus  
•  orbits are specified by semi-major axis, 
eccentricity, and orbit normal  

•  conserved  for each star: 

•  energy (semi-major axis)  

•  angular momentum magnitude 
(eccentricity) 

•  each annulus exerts steady force on all 
other annuli, leading to secular evolution 
of the orbit normals 

  ! orbit normals change in time Rauch & Tremaine (1996) 



Vector resonant relaxation 

•  Eccentricity + semimajor axis conserved 
•  Torques between axi-symmetric disks 

–  Parallel configuration stable 
–  Inclined orbits exert torques 

1.  “Thermal” equilibrium? 
•  Monte Carlo Markov Chain simulation 
•  Analytic solutions (Maier-Saupe model) 

2.  Time evolution?  
•  numerical simulation (symplectic integrator) 
•  analytic models (Laplace-Lagrange model) 

Interesting analogy: liquid crystals 

•  nematic    chiral nematic     columnar 



Thermodynamic equilibrium  
for vector resonant relaxation 

•  mutual torques can lead to relaxation of orbit normals (angular 
momenta) 

•  self-gravitating system in terms of the orientation of orbits 

•  interaction energy between stars i and j 
!ij 

masses semi-major axes 
eccentricities 

Angle between orbit normals 

•  What is temperature? 
•  More straightforward:  

•  microcanonical ensemble with fixed “energy” and angular momentum 

•  Canonical ensemble:  phase space probability density is 



Thermodynamic equilibrium from resonant 
relaxation – toy model #1 

•  drastic simplification assuming equal 
masses, semi-major axes, 
eccentricities and neglecting all 
harmonics > l=2 

•  this is the Maier-Saupe model for 
the isotropic-nematic phase transition 
in liquid crystals 

•  analytic mean field solution verified 
by experiments 

•  above temperature  

T=Tcrit=0.0743 CN/k  

the only equilibrium is isotropic. Below 
Tcrit there is a phase transition to a 
disk  

Boltzmann 
constant 

Tcrit 

unstable 

Kocsis & Tremaine (2010) 



orbit normals as a function of radius 

outer 
radius 

inner 
radius 

Thermal equilibrium 

Kocsis & Tremaine (2010) Monte Carlo Markov Chain simulation 

• Include all spherical 
harmonics in energy 

•  initially thick disk 
• Stars: 

•  same mass, 
 eccentricity 

•  conserve total 
energy, but doesn’t 
conserve angular 
momentum 



Time evolution  

Symplectic integrator (conserves Ltot exactly) 

Solve Hamilton’s 
equations of motion 
numerically 

•  same mass 
•  same radius 
•  same eccentricity 
N = 800 

Is there chaotic 
mixing? 

Kocsis & Tremaine (2010) 



Time evolution of a Thin Disk  
– toy model #2 

•  Secular forces between disk stars “exactly” 
–  Small inclinations and eccentricities ej,Ij < |aj-ak|/aj 
–  N stars with masses mj, semi-major axes aj, inclinations Ij, nodes "j!

•  Torques from the cluster as a background 

•  This system is described by the Laplace-Lagrange Hamiltonian  

Diagonalize: ! harmonic oscillator 
•  Normal modes (oscillate independently) 
•  Spherical cluster as external torque 

–  stochastic (Gaussian) 
•  Predict power spectrum of normal modes 

after time t = 6 Myr Kocsis & Tremaine, arXiv:1006.0001 



Normal modes of a Thin Disk 

Conclude: 

•  Long wavelength 
modes are slowest 

•  all but 4 modes 
have already 
saturated after 
6Myr 
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Kocsis & Tremaine, arXiv:1006.0001 



Growth of perturbations 

•  Solve equations of motion for normal mode amplitudes 
•  Three timescales 

–  Normal mode frequencies 
–  Correlation time of coherent torques 
–  Age of disk (integration time) –  t 

•  Normal modes evolve differently in various limiting cases  

Linear 
growth 

Harmonic 
oscillation 

Random 
walk 

small t  intermediate t! large t!
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Result for temporally coherent 

perturbations 

95% Conf. Int. 

Power Spectrum disk cross sections (example) 

cross corr 

Prediction: Long wavelength normal modes dominate 
Kocsis & Tremaine, arXiv:1006.0001 



Time evolution  

Symplectic integrator (conserves Ltot exactly) Kocsis & Tremaine (2010) 

Two components: 

•  spherical cluster 
with light stars 
(N1, m1 = 1) 

•  disk with massive 
stars 
(N2, m2 = 4) 

Total mass 
dominated by 
spherical cluster 
(N1 : N2 = 1 : 20 
N1 + N2 = 5000) 



Summary 

•  Vector resonant relaxation governs the evolution 
of stellar disks in galactic nuclei 
–  Chaotic 
–  relaxes toward thermal equilbrium 

•  Star cluster warps the disk 
–  Long wavelength modes dominate 

•  Thermal equilibrium:  
–  mass segration in inclinations 
–  thin corotating and counterrotating disks of massive 

stars 
–  phase transition at a given radius 



Observations: Warped disk 

Inside (1”-3.8’’) 
0.03-0.13 pc 

Middle (3.5’’-7”) 
0.13-0.27 pc 

Outside (7”-12’’) 
0.27-0.47 pc 

Bartko et al.  (2009) 



Thermodynamic equilibrium from resonant 
relaxation – toy model #1 

Tcrit 

unstable 

Kocsis & Tremaine (2010) •  Liquid crystals 

•  Many possible phases, e.g isotropic or 

•  nematic    chiral nematic     columnar 



Thermodynamic equilibrium from resonant 
relaxation – toy model #1b 

•  Simplified interaction: only l = 2 harmonic, circular orbits 

•  now allow different masses and semimajor axes 

•  equipartition of energy : 

•  effective temperature T ~ <E> / kB ~ 1060 K 

•  massive objects go into a thin disk, light objects go spherical 

•  objects with large semimajor axes have a smaller effective mass 

!  disk becomes spherical in the outside, thin in the inside 



Laplace-Lagrange model 

•  Harmonic oscillator + external stochastic torque.  
• Equation of motion: 

•  Predict probability of normal mode amplitude after time t.  
•  Example: coherent torque phase 

•  Assume correlation function of external torque 

•  Hamiltonian: 

•  Diagonalize: 



Thermodynamic equilibrium from resonant 
relaxation 

The right way to do it: 

•  model is specified by masses mi, semi-major axes ai, eccentricities ei, and 
initial orientations of orbit normals  

•  interaction energy between stars i and j is Hij=mimjf(ai,aj,ei,ej,cos !ij) 
where !ij is the angle between the orbit normals. Evaluate f numerically as 
an expansion in Pl(cos !ij) (can be done once and for all at the start) 

Kocsis & Tremaine (2010) 

where and 

For non-overlapping orbits 



Thermodynamic equilibrium from resonant 
relaxation 

The right way to do it: 

•  model is specified by masses mi, semi-major axes ai, eccentricities ei, and 
initial orientations of orbit normals  

•  interaction energy between stars i and j is Hij=mimjf(ai,aj,ei,ej,cos !ij) 
where !ij is the angle between the orbit normals. Evaluate f numerically as 
an expansion in Pl(cos !ij) (can be done once and for all at the start) 

Kocsis & Tremaine (2010) 

1.  Evaluate interaction energy 
numerically and use Markov 
Chain Monte Carlo to find 
equilibrium state 

2.   Dynamical simulation: 
Numerical integration of 
Hamilton’s equation*  
 * for N-annuli Hamiltonian above 


