

Max-Planck-Institut für Radioastronomie

Interactions between the SMBH SgrA* and its Environment Central Massive Objects: The Stellar Nuclei – Black Hole Connection 22–25 June, ESO, Garching, Germany Andreas Eckart

I.Physikalisches Institut der Universität zu Köln Max-Planck-Institut für Radioastronomie, Bonn

VLBI at 230 GHz (1.3 mm wavelength)

Yuan et al. 2009, Balbus & Hawley 1998, Balbus 2003

Yuan et al. 2009

Adiabatic Expansion of Source Components in the Temporary Accretion Disk of SgrA*

Eckart et al. 2008, ESO Messenger Eckart et al. 2009, A&A 500, 935

Pattern of a NIR spot orbiting at the ISCO

Pattern recognition against polarized red noise

total intensity

5σ

3σ

1σ

mean

polarization angle

polarization degree

Zamaninasab et al. 2009

Pattern of a spot orbiting at the ISCO

Zamaninasab et al. 2009

Pattern recognition against polarized red noise

Polarized flares as the signature of strong gravity are significant against randomly polarized red noise

Polarization data are consistent with the orbiting spot hypothesis

NIR Polarized Flux Density from SgrA*

Meyer, Eckart, Schödel, Duschl, Muzic, Dovciak, Karas 2006a Meyer, Schödel, Eckart, Karas, Dovciak, Duschl 2006b Eckart, Schödel, Meyer, Ott, Trippe, Genzel 2006

~4min prograde ~30min static for 3.6x10**6Msol

Cometary Sources: Shaped by a Wind from SgrA*?

X7 polarized with 30% at PA -34+-10 Mie → bow-shock symmetry along PA 56+-10 includes direction towards SgrA*

Muzic, Eckart et al. 2007, 2009, 2010

Cometary Sources: Proper Motions

Muzic, Eckart et al. 2010

Cometary Sources: Shaped by a Wind from SgrA*?

X7 polarized with 30% at PA -34+-10 Mie → bow-shock symmetry along PA 56+-10 includes direction towards SgrA*

Muzic, Eckart et al. 2007, 2009, 2010

Cometary Sources: Source Location

y (arcsec)

At least X7 is located within +-3.2" of the plane of the sky with a 67% probability.

-6 a 67% probability. x (arcsec) However, X3 may be co-spatial with the locatic of the mini-cavity (see y (arcsec) X7 also Zhao et al. 2009). Х3 mini-cavity -4 -6 $P(V > V_{PM}, r) = 1 - \frac{1}{\sigma^2} \int_0^{V_{PM}} v \, exp\left(\frac{-v^2}{2\sigma^2}\right) dv$ csec) Muzic, Eckart et al. 2010

optical depth throughout the shock

$$\tau(\lambda) = \tau_{abs}(\lambda) + \tau_{sca}(\lambda) = L \int_{a_{-}}^{a_{+}} n_d(a) C_{ext}(a,\lambda) da$$

extinction coefficient

$$C_{ext} = \pi a^2 (Q_{abs} + Q_{sca})$$

Examined stellar wind sources

- •Late B-type main sequence stars (B7-8V)
- •Herbig Ae/Be stars
- •Central stars of Planetary nebulae (CSPN)
- •Low-luminosity Wolf Rayet (WR) stars (WC-type stars)
- •Main sequence stars
- •Dust-blob (X3, not X7)

Muzic, Eckart et al. 2010

Luminosity from emission and scattering

 $L = L_{sca} + L_{th}$ $L_{th} \propto B(T_d)(1 - e^{-\tau_{abs}})\epsilon_{th}$ $L_{sca} \propto d^{-2}\epsilon_{sca}P(\theta_{sca})e^{-\tau_{sca}}$

dust temperature close to the central star (VanBuren & McCray 1988; Krügel 2003)

$$T_d = 27 \, a_{\mu m}^{-1/6} \, L_{*,38}^{1/6} \, d_{pc}^{-1/3} \, \mathrm{K}$$

normalized scattering function

$$P(\theta_{sca}) = \frac{1 - g^2}{1 + g^2 - 2gcos(\theta_{sca})}$$

X7

X7

X3

Examined stellar wind sources

Not a wind from a single star of the GC young (He-)stars but only a collective wind from heavily mass loosing stars can potentially explain the bow-shock structure of X3 and X7.

However, such a global wind only emerges on scales of ~10", where as the distance of X7 and X3 is only 0.8" to 3.4" and the fact that the bowshocks are elognated and point towards SgrA* is not explained.

Standard Accretion Theory

With an estimated total wind mass loss - that could be accreted - of

$$\dot{M} \approx 2 \times 10^{-4} M_{\odot} y r^{-1}$$

that corresponds to an accretion rate in Eddington units of

$$m \approx 1 \times 10^{-3}$$

for a black hole mass of

$$(3-4) \times 10^6 M_{\rm O}$$

Standard Accretion Theory

From the bolometric luminosity of $L \approx 2.1 \times 10^{36} erg/s$

one obtains an efficiency of

$$\eta_{eff} = \frac{L_{bol}}{M_{Edd} c^2} \approx 5 \times 10^{-6}$$

For the estimated accretion rate this would imply a much larger bolometric luminosity than actually observed:

$$L \approx 0.1 \times M_{Edd} c^2 \approx 4 \times 10^{43} erg/s$$

This is larger by a factor of about 10^7

SgrA* is either very ineffciently accreting matter of very little of the matter available for accretion actually reaches the MBH, while the rest is blown away.

Dynamical Model for Accretion Ineraction between the 'starburst' and the black hole

Massloss from stars $10^{-4} M_o yr^{-1}$ radiation efficiency of SgrA* $\approx 10^{-7}$ Bower et al. 2003: RM of linear polarized flux rules out large accretion rates

Quataert 2003: hydrodynamic calculations show that almost the entire mass gets blown away in a central wind. Available for accretion: $< 10^{-5} M_{o} y r^{-1}$

Cometary Sources: Shaped by a Wind from SgrA*?

X7 polarized with 30% at PA -34+-10 Mie → bow-shock symmetry along PA 56+-10 includes direction towards SgrA* Besides the Mini-Cavity – the strongest indication for a fast wind from SgrA*!

Muzic, Eckart, Schödel et al. 2007, 2009, 2010

Sketch of an Outflow Model: The Combined Wind from the Cluster of Hot Stars and SgrA*

Muzic, Eckart, Schödel et al. 2007 A&A 469, 993 Sabha, Eckart, Witzel, et al. 2009

GC SMBH interaction with the ISM

The following aspects need to be considered:

- accretion through a preferred plane?
- presence of a temporary relativistic disk
- inefficient accretion
- preferred direction of a wind from SgrA* in addition to a wind from all mass loosing stars (min-cavity and bow-shock stars)

