LAMOST Spectroscopic Survey

Yongheng Zhao

National Astronomical Observatories of China

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

> A meridian active reflecting Schmidt telescope

Started in 1997
First light in August 2008
Inauguration in 16 October 2008

> now in commissioning stage

Characteristics of LAMOST

- Effective aperture
- FOV
- Number of optical fiber
- Observing sky area
- Spectral resolution
- Size of fiber
 - Site seeing: ~2 arcsec
- Survey capability

4 meter 5° (1.75m linear) 4000 $-10^{\circ} \le \delta \le +90^{\circ}$ 1-0.25nm 3.30 arcsec (320 macro linear) taking spectral resolution 1nm,

integration time 1.5 hours,

magnitude limit: 20.5^m

Structure of LAMOST

Enclosure

Optical System

- MA: reflecting corrector (24 sub-mirrors) ~ 4.9m
- MB: spherical mirror (37 sub-mirrors) ~ 6.1m

Segmented Active optics for 37 sub-mirrors of MB

24 sub-mirrors of MA

Segmented and thin mirror active optics for 24 sub-mirrors of MA

(Sept. 10, 2008)

Image quality of LAMOST

(Nov. 21, 2008)

Instruments

> 4000 Fibers (130km)
> 4000 Fiber positioning units

8000 step motors

> 16 Spectrographs

250 fibers per spectrograph

> 32 4k x 4k CCD Cameras

E2V CCD chips

4000 fiber positioning units

Positioning unit with 2 step motors

Focal Plate for holding 4000 fibers

Double arm scheme

16 spectrographs

250 fibers per spectrograph

 $R_{\rm L} = 1000/2000$ $R_{\rm M} = 5000/10000$

Spectral range: Low blue: 370—590nm red: 570—900nm Medium blue: 510nm—540nm red: 830nm—890nm

Test Observations

> Sept. 28, 2008

More than 2000 spectra of bright stars got in one test observation

Dec. 27, 2008 M31

Spectra of stars (28/9/2008)

Test Observations

> Dec. 27, 2008

- M31
 - Planetary nebula
 - Global clusters
- Others
 - Galaxies
 - Stars
- 1800s Exp.

PN in M31

> 2009: commission period • Early Science

> 2010 / 2011: regular spectroscopic survey • 5 year survey

Spectroscopic Surveys

Key projects include

- extra-Galactic
- Milky Way
- cross-identification

> WG for the Milky Way study
 > WG for extragalactic survey
 • Survey plan will be fixed in 2009

LAMOST SKY SURVEY FOR THE STRUCTURE OF THE MILKY WAY

Dwarf galaxies and stellar moving groups

How is the Galactic Halo formed?

Constraining the gravitational potential

- The kinematical information carried by stars can be used to constrain the mass distribution in the Galaxy.
 Radial + tangential velocities + (α , δ ,d)
 Large area survey and homogeneous
 - high precision data set is needed. Radial velocity measurement by LAMOST beyond GAIA limit (< 17m) will be important in this issue.

Probing the Spheroid, is it triaxial?

There is a apparent deviation from rotational symmetry as shown by star counts.

Stellar projected number density distribution in a ring at b=+60

What are those substructures?

> Possibly

- Dwarf galaxies
- Globular clusters
- Tidal debris of accreted dwarfs

Tidal radius estimation: bound or unbound?
 Need LAMOST survey data to confirm

Other scientific goals

Search for extremely metal poor stars

 The structure of the thin/thick disks of the Galaxy, including the chemical abundance;

Globular cluster: environment and their origin;

 A survey of the properties of Galactic open clusters, including the structure, dynamics and evolution of the disk as probed by open clusters;

Making a survey for planed scientific goals

Galactic survey plan:

- Consider a 5 year survey plan
- > spectra of 2.5m stars are expected
 - Using about ½ of the total dark observing time for halo (down to 20m)
 - Using about ½ of the grey and all bright nights for bright stars (18m) in the 'green' fields

Extragalactic Survey

Shallow Survey:

large area with low S/N observation, only get redshift. 30 minutes exposure, 10000 deg² (most in SDSS region), r<18.8

* Deep Survey:

90 minutes exposure, 3000 deg² (most in South galactic cap), r<19.5

- Early Massive Galaxy Survey (EMG): similar to LRG, 0.5-2 million targets
- QSO survey 0.5-1 million targets

Number distribution of galaxies with different apparent magnitude

Comoving Density of Early Massive Galaxies

Effective Volume of the Surveys

Constraint on Dark Energy Equation of State

Completeness of EMG survey by 4th year

Thank You !

