Studying the sub-AU structure of protoplanetary disks and YSO accretion-/outflow-processes with VLTI spectro-interferometry

> "From circumstellar disks to planetary systems" workshop

2009 November 5 ESO, Garching

Stefan Kraus ^{1,2}

Gerd Weigelt ¹ Karl-Heinz Hofmann ¹ Fabien Malbet ³ Antonella Natta ⁴ Thomas Preibisch ⁵ Dieter Schertl ¹ + AMBER consortium

- ¹ MPI for Radioastronomy, Bonn
- ² NASA Sagan Fellow, Univ. of Michigan
- ³ LAOG, Grenoble
- ⁴ INAF, Arcetri
- ⁵ Universitäts-Sternwarte, Munich

Exploring the inner-most AU of YSO disks

Hot dust (T~1500 K) at the dust sublimation radius is expected to dominate the near-infrared continuum emission.

Infrared interferometry allows one to probe the inner AU of YSO disks, where...

Image: ESO/Calçada

PART 1

PART 2

...the disk structure changes dramatically due to dust sublimation effects

...active accretion takes place

...material is accelerated and ejected in outflows/jets

Constraints on the inner disk structure

Interferometric observables:

Visibilities

→ measures object extension (in first order) **Closure Phases (CPs)** \rightarrow measures deviations from point-symmetry

R Coronae Australis

- Herbig Ae star located in Coronet cluster at d=130 pc (Marraco & Rydgren 1981)
- Spectral type very uncertain (F5-B8)
- Associated reflection nebula (NGC 6729)
- Embedded in envelope (dominating mid-IR/mm SED)
- Hypothetical companion star proposed by: Takami et al. 2003 (based on Hα spectro-astrometric signal)
 Forbrich et al. 2006 (based on unexpected X-ray emission)

Corona Australis, B/V/R-band (2.2m/WFI, ESO/F. Comeron)

Revealing the asymmetries of the inner dust rim VLTI/AMBER observations on R CrA

Revealing the asymmetries of the inner dust rim Indications for a disk + envelope geometry

(1) Pronounced change in slope in visibility function indicates 2 spatial components: <u>Extended component (~30 mas)</u> & <u>Compact component (~5 mas)</u> "Envelope" "Disk"

Revealing the asymmetries of the inner dust rim Indications for a disk + envelope geometry

 (1) Pronounced change in slope in visibility function indicates 2 spatial components:
<u>Extended component (~30 mas)</u> & <u>Compact component (~5 mas)</u> "Envelope" "Disk"

(2) Visibility profile changes with position angle

Revealing the asymmetries of the inner dust rim Position-angle dependence of visibilities & CPs

Revealing the asymmetries of the inner dust rim BINARY STAR model

 \rightarrow The detected asymmetries very likely <u>do not</u> trace a binary companion.

Revealing the asymmetries of the inner dust rim VERTICAL RIM model

Revealing the asymmetries of the inner dust rim CURVED RIM model (1/2)

Revealing the asymmetries of the inner dust rim CURVED RIM model (1/2)

Revealing the asymmetries of the inner dust rim CURVED RIM model (2/2)

STAR:

Luminosity:

29 L_o

DISK:

Inclination: Disk orientation: Dust cooling efficiency: $\varepsilon \ge \varepsilon_{cr}$ (large grains)

 $i = 35^{\circ}$ $\phi = 90^{\circ} (N-S)$

ENVELOPE:

Gauss FWHM: I_{env}/I_{disk}

32 mas 0.5

Revealing the asymmetries of the inner dust rim Comparison with large-scale structure

- Derived disk orientation is consistent with polarization disk (Ward-Thompson et al. 1985)
- Bow shock-like features appear roughly perpendicular to disk plane

Origin of hydrogen line emission in YSOs

Besides the dust continuum emission, YSOs exhibit also gas-tracing emission lines, tracing the accretion & outflow processes in YSOs.

Funnel flow simulations (Romanova et al. 2007) ulum milimiture

8

MHD jet launching simulations (Casse & Keppens 2004)

Origin of hydrogen line emission in YSOs

Origin of hydrogen line emission in YSOs VLTI/AMBER observations on 5 Herbig Ae/Be stars

Our sample includes 5 YSOs, including archival data from Malbet et al. 2007 & Tatulli et al. 2007

Origin of hydrogen line emission in YSOs Evidence for magnetospheric accretion & mass outflow

Origin of hydrogen line emission in YSOs Evidence for magnetospheric accretion & mass outflow

What do we know about the Br γ -emitting mechanism?

(1) spectro-interferometry:Br γ can trace both mass infall and mass outflow

(2) empirical relation:

Br γ luminosity correlates with mass accretion rate (as determined from UV veiling, e.g. Muzerolle et al. 1998)

\rightarrow Br γ *indirect tracer* of mass accretion rate

(suggests tight quantitative connection between accretion- & outflow processes) (cf. spectroscopic studies, e.g. Cabrit et al. 1990: $\dot{M}_{eject}/\dot{M}_{acc} \approx 0.1$)

<u>Revealing sub-AU asymmetries around R CrA:</u> (Kraus et al., A&A accepted)

- Closure phases can measure sub-AU asymmetries & constrain inner rim models
- For R CrA, detected asymmetries cannot be explained with companion star scenario
- Visibilities, CPs & SED can be reasonably well reproduced with curved puffed-up inner rim + envelope model

Origin of line emission in Herbig Ae/Be stars:

- (Kraus et al. 2008) • Spectro-interferometry allows one to trace gas in the inner disk
- Br γ traces *both* magnetospheric accretion and outflow processes
- Br γ *indirect* tracer of mass accretion rate