Debris Disks in the Nearest OB Association

Christine H. Chen (STScI)

M. Bitner (STScI), E. Mamajek (Rochester), Marc Pecaut (Rochester), K. Su (Steward Observatory), A. Weinberger (Carnegie DTM)

Giant Planet Formation

- Once gas has dissipated, km-sized bodies agglomerate into oligarchs that stir small bodies
- Infrared observations of dust can help constraint disk properties during the period of oligarchic growth to determine average properties and magnitude of variation

Stellar Properties Impact Disk Evolution

Scorpius-Centaurus OB Association

- Nearest OB association from the Sun with typical stellar distances 100-150 pc
- Contains 3 subgroups:
 - Upper Scorpius (5 Myr)
 - Upper Centaurus Lupus (15 Myr)
 - Lower Centaurus Crux (17 Myr)
- F- and G-type members have ²⁰ been identified based on Hipparcos common proper motion (de Zeeuw et al. 1999)

Prebisch & Mamajek 2008

Observations

- Magellan MIKE high resolution (R~60,000) visual spectroscopy
 - Gas phase studies: H α , Call H and K/Na I D absorption
 - Stellar Activity Measurements: R'_{HK}, *v*sin*i*
- Spitzer MIPS 24 and 70 μ m photometry
 - Identify excess candidates
- Follow-up Spitzer IRS low resolution (R~60) midinfrared spectroscopy
 - Characterize grain composition, size, distance, mass
- Follow-up Spitzer SED mode (R~10) far-infrared observations
 - Characterize grain composition, size, distance, mass

MIPS 24 μ m Color-Color Diagram

- Stars with older ages possess more late spectral type stars with 24 μm excess
- Stars with J-H < 0.02 possess significantly larger 24 μm excesses than those of later spectral type

ScoCen F- and G-type Stars: 24 μm Disk Fraction

	FEPS	US	ScoCen	Total
	Carpenter 08	Carpenter 09	This work	
US	6/9	4/29	6/18	16/56
5 Myr				(29±7%)
UCL	2/10		8/46	10/56
15 Myr				(18±6%)
LCC	7/13		19/49	26/62
17 Myr				(42±8%)

- LCC possesses the highest fraction of F- and G-type stars with 24 μm excess

MIPS 70 μ m Color-Color Diagram

- Our MIPS 70 μm observations were very shallow (1 cycle of 10 sec integrations) and were not sensitive to stellar photospheres
- We detect several objects with very bright 70 μm excess

MIPS 24 um Excess Evolution

•

•

Our MIPS 24 μm observations of F0-F5 stars are consistent with the Kenyon & Bromley (2008) models, indicating a peak in 24 μm excess at 15-30 Myr

The Carpenter et al.
(2009) observation of
US indicate that the
late-type stars possess
larger 24 μm excess
than expected from the
models

Both Primordial and Debris Disks Present

AK Sco in UCL (15 Myr) PMS Spectroscopic F5 Binary dM/dt = $9 \times 10^{-8} M_{\odot} \text{ yr}^{-1}$ HD 113766 in LCC (17 Myr) MS 1.3" (170 AU) F3/F5 V Binary $L_{IR}/L_* = 0.002$

HD 101088: An Accreting Binary with a Weak Infrared Excess

- Time-variable, broad $H\alpha$ emission, consistent with an accretion rate ~10^-8 $M_{\odot}~yr^{-1}$
- MIPS 24 μm and IRS excess (L $_{\rm IR}/L_{\star}$ = 10⁻⁴): if grains are large, then T $_{\rm gr}$ = 500 1500 K.
- MIPS 70 μm upper limit

MIPS 70 μm Excess Evolution

- Kenyon & Bromley (2008) models predict that disks should be bright at 70 μm
- Our MIPS 70 µm observations of Sco-Cen are not sufficiently deep to test the self-stirred disk models at farinfrared wavelengths

Disk Properties Depend on Spectral Type

 The probability that the F0-F5 stars and the F6-G5 stars possess the same distribution of K-[24] excess is 3%

Why Do the Early and Late-Type Stars in Our Sample Behave Differently?

Differences Anticipated by KB08 Models:

- Stellar Luminosity
 - $F_{ex}(24 \ \mu m)/F_{*}(24 \ \mu m)$
- Stellar Mass
 - Collisional Grinding Timescale

Stellar Wind Drag:

- Stars with Spectral Type F0-F5 are evolving onto MS at 15-20 Myr; their envelopes are changing from convective to radiative
- Late-type stars with winds would be expected to possess less dust

Stellar Wind Drag Diagnostics: L_x/L_{*}

- Chen et al. 2005 argued that a possible anti-correlation between L_{IR}/L_* and L_x/L_* argued for stellar wind drag as a possible dust removal mechanism
- ROSAT All Sky Survey is insensitive at the distance of Sco-Cen for inferring the presence of stellar winds <1000x that found in our solar system
- The probability that the x-ray "active" $(L_x/L_* > 2 \times 10^{-3})$ and "inactive" stars are drawn from the same population is ~28%

Stellar Wind Drag Diagnostics: R'_{HK}

- R'_{HK} measured from Magellan/MIKE R~60,000 visual spectra for (almost) all of the stars in our sample
- The probability that R'_{HK} "active" (R_{HK} <-4.5) and "inactive" stars are drawn from the same population is 0.03%
- R'_{HK} is typically used as an activity indicator for stars with spectral type later than F7V; therefore, anti-correlation may be tracing the effect of a parameter other than activity

Conclusions

- Early and late-F type stars in each of the Sco-Cen subgroups possess different disk fractions and excess magnitudes
- The fraction of F0-F5 stars with excess, and the magnitude of their excess appears to rise to a maximum at the age of ~17 Myr, consistent with collisional grinding in a self-stirred disk
- The fraction of F6-G9 stars with excess and the magnitude of those excesses are smaller than for early F-stars, consistent with self-stirred disk models
- Infrared excess and x-ray luminosity are weakly anti-correlated, suggesting that stellar wind drag may remove dust grains at these ages
- Infrared excess and Call R'_{HK} are strongly anti-correlated