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1. INTRODUCTION 

 
NGC is the ESO New General detector Controller (Baade et al. 2008 [1]), designed to handle 

the detectors of both optical and infrared instruments, for scientific imaging as well as advanced 

signal sensing applications. Basically the NGC electronics is the same for both infrared and 

optical applications. Nevertheless there are many differences concerning the usage of the 

controller and the data acquisition and data handling procedures. To cover both applications in 

an effective way and also to have a certain backwards compatibility with the predecessors 

IRACE (Meyer et al. 1996 [3]) and FIERA (Beletic et al. 1998 [4] and Cumani et al. 1998 [5]) 

different software architectures have been chosen. 

 

The following paragraph summarizes the main differences: 

 

 Detector Read-Out Schemes 

For infrared applications the clock-pattern generation is running in an infinite loop and 

the detector is read-out/reset all the times. The optical detector is read-out just once at the 

end of an exposure.  

 

 Data Handling 

The optical application delivers one frame at the end of the exposure and the only 

processing to be done is pixel sorting and possibly offset correction (if not yet done by 

the HW). The infrared data require some pre-processing depending on the read-out mode 

of the detector in use. The read-out modes, the pre-processing algorithms and the setup-

parameters for these algorithms are manifold and require a very high degree of flexibility. 

The pre-processing task produces an arbitrary number of different result frame types, 

which all have to be transferred and/or displayed on demand. This also has an impact on 

the interface to the video display (section 8.3) because the frames to be displayed are not 

necessarily the same as the ones to be stored on disk. The latter is always the case for 

optical exposures. 

 

 Exposure Loops 

For infrared applications starting an exposure basically means starting to transfer the 

acquired data to a FITS-file (i.e. the server has to attach to and keep step with a running 

procedure). The end-of-exposure condition is flexible and depends on both the requested 

frame types and on the number of frames of each type to be produced and stored. The 

optical exposure always terminates with the saving of the data, which are read at the end 

of the exposure and follows a much more rigid scheme (“wiping” – “integrating” – 
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“reading-out” – “transferring” – “completed”). This scheme implies an active 

intervention of the control server during the exposure like the application of new voltages 

in each state and the additional shutter-control, whereas the infrared control server mainly 

reacts passively on incoming data-frames once the exposure is started. So basically the 

demands on process concurrency are very different in both cases. 

  
The goals were now to have one common software basis for both optical and infrared 

applications with maximum heritage of the strength of the two predecessors FIERA and IRACE. 

The system should be configurable for all possible realizations (i.e. number of channels, voltage 

drivers, array dimensions) thus requiring a strongly modular software architecture. The clock-

pattern generation should be easily programmable and also support the synchronization with 

external events.  

2. SYSTEM ARCHITECTURE 
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Figure 1 System Architecture 

 

Figure 1 shows the overall system architecture with the maximum complexity. A detailed 

description of the hardware components is given in Meyer et al. 2009 [2]. In the simplest case 

only one four-channel array is controlled via one front-end-basic board (FEB) connected to one 

hosting computer (NGC LLCU) via one PCI interface board. The NGC-LLCU is a PC running a 

Linux operating system (kernel 2.4 or higher). The PCI-board and the associated Linux device 

driver are both ESO developments. The front-end-basic board hosts four ADC components, the 

clock-pattern generator (sequencer), the clock- and bias-driver and auxiliary modules for shutter 

control and preamplifier control. When four channels are not enough additional acquisition 

boards (AQ) each hosting 32 ADC components may be added. When connecting through one 

single chain the bandwidth of the data link might be exceeded and the system needs to be 

accessed through additional PCI-Bus cards. This may imply the usage of more than one NGC-

LLCU, also in case the computing or peripheral bus bandwidth of the NGC-LLCU is not 

sufficient. So the configuration range covers a simple system controlling one detector via one 

PCI-Bus interface card as well as large detector mosaics distributing their data via a huge 

number of channels among several computers. 
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3. THE PROCESSES 
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Figure 2 Processes 

 
The NGC detector control software is running partly on the instrument workstation and partly 

on the NGC-LLCU, where the physical interface(s) to the NGC detector front end reside. 

Figure 2 shows the processes running on this computing architecture. The control server 

communicates with the NGC electronics through driver interface processes running locally on 

the NGC-LLCUs. One driver interface process is launched by the control server per physical 

interface device. The acquisition processes (used for infrared data acquisition and pre-

processing) are also launched and controlled by the control server. For maintenance and 

development operations all processes shown on the instrument workstation side may also run 

locally on one of the NGC-LLCUs. For software testing and software development all processes 

may run in simulation mode on the instrument workstation. All control software is coded in the 

C++ programming language. The graphical applications (see section 7) are based on TCL/TK. 

All software modules are under version control according to the ESO VLT-software standards 

which also employ automated testing facilities. The test procedures are launched every night 

and failures are reported automatically to the module owner. The NGC software is part of the 

yearly ESO VLT-software releases. 

 

In order to optimize the commonality of the optical and infrared systems, the infrared detector 

control server can be scaled down to control only the NGC without doing any data acquisition 

or exposure handling. In this configuration it can simply be operated as a command driven sub-

system of the NGC optical software. That is the maximum degree of commonality as the same 

compiled and linked object is used by both applications to access the controller electronics. The 

server can be configured at run-time for the one or the other purpose. It is also used as general 

engineering tool. 

 

http://www.eso.org/projects/vlt/sw-dev/
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4. SYSTEM CONFIGURATION 

The overall controller configuration is done through configuration files in short FITS format. 

For infrared applications it is divided into system configuration and detector configuration. The 

system configuration describes the physical NGC system architecture (e.g. number and 

addresses of boards in the system). It includes all information to identify the hardware 

configuration including the interface device names and the computing architecture (host names, 

environments, etc.).  The detector configuration describes the usage of the system with respect 

to the connected detector(s) (i.e. which clock-patterns and which sequencer programs to load, 

which voltage setup to apply, etc.). There are cases, where more than one detector is driven by 

the same controller electronics and the switch between the detectors has to be done by applying 

a different detector configuration (i.e. enable/disable a different set of clock-drivers and/or 

ADC-modules). To reflect such cases, where different detector configurations are used on the 

same system configuration (or vice-versa the same detector configuration is used on different 

system configurations), the two files are kept separate in order to avoid unnecessarily duplicated 

information. Additionally a startup-configuration file (also in short FITS format) defines the 

command line options of the control server and is intended to be employed by higher level 

system startup tools. Figure 3 shows the hierarchy of the NGC configuration files. 
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Figure 3 Configuration Files 

 

5. CONTROLLER PROGRAMMING 

The controller programming consists of the definition of clock patterns, sequencer programs and 

the voltage setup. The detector voltages are defined in a voltage configuration file in short FITS 

format. The voltages can be changed at run-time within a given range. Clock-pattern blocks can 

be defined both in ASCII-format and in a binary format, which is the output of the graphical 

editing tool BlueWave (section 8.5). The formats can be converted automatically. 

Synchronization with external events (e.g. trigger) can be done after any state in any clock-

pattern block. A sequencer programming language has been defined to program the clock-

pattern execution. There may be multiple sequencer instances within one detector front end 

system which can be operated synchronously based on one master clock. 
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5.1. Clock Pattern Generation 

The clock pattern blocks define sequences of clock states which are stored in a RAM inside the 

NGC sequencer FPGA. The bits in the RAM define the state of each physical clock line plus 

some control bits (“wait-for-trigger”, “end-of-pattern”). The duration of each state (dwell time) 

is defined in the state itself. 

 

PATRAM             Pattern RAM High                  Pattern RAM Low

… + 0:      00000000000001010001000000000000 00000000000000000000000000000000  State 1

… + 1:      00000000000001010001000000000001 00000000000000000000000000000100  State 2

… + 2:      00000000000001010001000000000001 00000000000000000000000000000100  State 3

:

… +(n-1):   10000000000001010001000000000000 00000000000000000000000000000000  State n

… + n:      00000000000001010001000000000000 00000000000000000000000000000000  State 1

… +(n+1):   00000000000001010001000000000001 00000000000000000000000000000100  State 2

… +(n+2):   00000000000001010001000000000001 00000000000000000000000000000100  State 3

:

… +(n+m-1): 10000000000001010001000000000000 00000000000000000000000000000000  State m

^   ^   ^   ^   ^   ^   ^   ^    ^   ^   ^   ^   ^   ^   ^   ^  ^

64  60  56  52  48  44  40  36   32  28  24  20  16  12  8   4  1  Clock

Pattern 1

Pattern 2

End of Pattern

 
Figure 4 Clock Pattern RAM 

 

The sequencer runs at a clock speed of 100 MHz (1 tick = 10 ns). So the dwell time of each 

clock state can be specified in steps of 10 ns. Synchronization points can be inserted at any 

place in any clock pattern by setting the “wait-for-trigger” bit in the particular state. When 

reaching such a point, the pattern execution is suspended after the dwell-time of this state until 

the arrival of an external trigger signal. 

 

 

# Clock mapping (can be spread over several lines).  

# This maps the clocks described below onto physical clock lines.

# Mechanism is: Phys. clock line for logical clock n = MAP[n].

DET.CLK.MAP1  "1,2,3,33";   # Mapping list

DET.CLK.MAP2  "37,4,61";    # Mapping list

# Clock pattern definitions

DET.PAT1.NAME  “FrameStartSync"; 

DET.PAT1.NSTAT 5;       

DET.PAT1.CLK1  "00000"; 

DET.PAT1.CLK2  "00000";

DET.PAT1.CLK3  "00000";

DET.PAT1.CLK4  "00000";      # Convert

DET.PAT1.CLK5  "00110";      # Start pulse

DET.PAT1.CLK6  "00000";

DET.PAT1.CLK7  “10000";      # Sync

DET.PAT1.DTV   "2,2,2,2,2";  # Dwell-Time vector

DET.PAT1.DTM   "0,0,0,0,0";  # Dwell-Time modification flags

Wait for Trigger

 
Figure 5 External Synchronization 
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5.2. Sequencer Programming 

The sequencer program defines the order of execution of the defined clock pattern blocks. It is 

stored inside the sequencer FPGA in a simple 7 instruction code RAM.  

 

Address :  Pattern-RAM HI  Pattern-RAM LO

BIT [31..0]     BIT [31..0]

PATRAM+ 0:

PATRAM+ 1:

PATRAM+ 2:

PATRAM+ 3:

PATRAM+ 4:

PATRAM+ 5:

PATRAM+ 6:

PATRAM+ 7:

PATRAM+ 8:

PATRAM+ 9:

PATRAM+10:

PATRAM+11:

PATRAM+12:

PATRAM+13:

PATRAM+14:

PATRAM+15:

PATRAM+16:

PATRAM+17:

PATRAM+18:

:

:

Clock-Pattern

Block 1

Clock-Pattern

Block 1

Clock-Pattern

Block 2

Clock-Pattern

Block 2

Clock-Pattern

Block 3

Clock-Pattern

Block 3

Clock-Pattern

Block 4

Clock-Pattern

Block 4

Address : <Instruction>  <Rep>   <Address> 

BIT [30..28]  [26..11] [10..0]

SEQRAM+0: [LOOP]          [N]    [-]

SEQRAM+1:   [EXEC]        [N]    [PATRAM offset]

SEQRAM+2:   [LOOP]        [N]    [-]

SEQRAM+3:     [EXEC]      [N]    [PATRAM offset]

SEQRAM+4:   [LOOPEND]     [-]    [-]

SEQRAM+5:   [JSR]         [-]    [SEQRAM offset]

SEQRAM+6: [LOOPEND]       [-]    [-]

SEQRAM+7: [EXIT]          [-]    [-]

:

:

… +offset : [EXEC]       [N]    [PATRAM offset] 

… +offset+1: [EXEC]       [N]    [PATRAM offset] 

… +offset+2: [RETURN]     [-]    [-] 

[LOOP]    = 010   [JSR]    = 101   [EXEC] = 001

[LOOPINF] = 100   [RETRUN] = 110   [EXIT] = 000

[LOOPEND] = 011

 
Figure 6 Sequencer Program RAM 

 

The object code with the three basic commands EXEC, LOOP and JSR (jump-to-subroutine) can 

easily be compiled from a higher level programming language. This higher level sequencer 

program language is then fully driven by setup parameters (e.g. detector integration time, 

number of integrations, window parameters). The language supports arithmetic expression 

evaluation (TCL-syntax) to derive any program-loop parameter from the setup parameters and 

to compute attributes like exposure time estimation and minimum DIT. TCL has been chosen 

because it is a commonly used ESO software standard. The script evaluation may not be 

required by all applications. Where no expression evaluation is needed a simple code parsing 

can be done. Sub-routines and include files help to minimize the total code length.  

  

6. INFRARED EXPOSURES 

During an infrared exposure the data acquisition is usually running continuously and 

integrations are done one after another. Starting an exposure basically means to start transferring 

the data to a file on the instrument workstation. The display (see section 8.3) usually remains 

active during an exposure. Even when no exposure is running the software supports a sustained 

data-transfer between NGC-LLCU and instrument workstation in order to perform an 

application specific post-processing. This is needed for slow control loops (e.g. secondary auto-

guiding).  
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6.1. Acquisition Process 

The data acquisition process running on the NGC-LLCU is a multi-threaded pre-processing 

framework with a high task concurrency. Basically the pre-processing task to be performed is: 

 Receive data from an external device. Generally this is achieved by writing the data 

from the device directly to the computer memory (DMA) and generating an interrupt 

once a certain amount of data had been transferred (data event). The data flow is 

continuous. 

 Compute a data-array containing the result of the pre-processing - in the easiest case by 

sorting and/or adding up several subsequent input arrays. The computation (“adding-

up”, “sorting”) must happen in parallel to the reception (DMA) of the next input data 

array. The algorithms are manifold and need specific parameters to be defined at run-

time (“number of input arrays to add up”, “number of frames to skip”). There are no 

strict real-time requirements (i.e. guaranteed response time on a data event), but the 

amount of data to be processed within a certain time-slot is huge (up to several hundred 

Mega-Bytes). The pre-processing must be done with higher priority than other system 

tasks which requires a priority based scheduling scheme (preemptive Linux kernel). 

 Transfer the result array to disk and/or to a display. The target disk and the display 

utility usually reside on another computer (instrument workstation). Thus the transfer is 

done via a network interface. The transfer of the result array must also happen in 

parallel to both receiving and processing the next incoming data arrays (continuous data 

flow). Memory copies have to be avoided. This is a “low” priority task as the transfer 

only happens once after a certain amount of data has been processed. 

 Handle asynchronous commands (e.g. “SETUP”, “START”, “STOP”). This has to be 

handled with highest priority to guaranty system addressability at all times. 

 

The actual pre-processing algorithm is designed as a tiny main-process employing the threads 

framework. The thread scheduling and synchronization is fully transparent. There is one process 

per detector read-out mode which guarantees maximum independency and maximum safety as a 

new mode can never corrupt working code and all resources are released whenever the mode is 

switched. 

 

Template processes have been developed, which are an easy-to-use and stand-alone tool to 

visualize NGC raw-data on the video display (see section 8.3). Standard acquisition processes 

for the ESO Standard IR Detectors (HAWAII 1Kx1K, HAWAII2-RG 2Kx2K, SELEX, 

AQUARIUS) are available within the NGC software package. Special setups (e.g. mosaics) 

may require special software modules. 

6.2. Frame Types 

The application specific acquisition processes may produce an arbitrary number of frame types 

(“raw frame”, “mean-value”, “standard deviation”, “chopper half-cycle frames”). Each frame 

type has two flags associated to define whether frames of that type will actually be produced by 

the pre-processor and whether frames of that type should be stored to disk during an exposure. 

A software window can be defined individually for each type and for each acquisition module. 

 

Usually an exposure is finished when the frame containing the mean value of several read-outs 

has been received on the instrument workstation. As it is required by some read-out modes to 

store also other frames during one exposure, a more general exposure break condition has to be 

applied: each frame generated by the acquisition process and selected to be stored can have a 

counter, which indicates the number of frames of that type to be stored during the exposure. The 

exposure is finished, when all of these frames have reached their break condition. 
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6.3. Burst Mode 

In some cases it is necessary to store larger amounts of raw data or to sample at very high frame 

rates. If the frame rate is too high (> 200 Hz on most non-real-time UNIX platforms) the DMA-

interrupt latency becomes dominating and no more CPU-power is left for pre-processing. Two 

kinds of “burst modes” are used to cover these two cases. One mode just fills up the memory 

with raw data and dumps it out to disk (“raw data mode”). The other mode internally increases 

the DMA-buffer and then does the normal pre-processing on several raw-data frames in one step 

in order to work around the frame rate limitation (“internal burst mode”). The “internal burst 

mode” mode is transparent to the pre-processing framework. 

6.4. Data Interface  

The standard data interface is FITS binary image extension format. The “user” waits for 

exposure termination and then reads the generated file. It is also possible to establish a direct 

connection to the acquisition process in order to retrieve the binary image data with just 

minimum header information (dimension, type, sequential number). This is normally done by 

displaying applications (video display). A third interface to the image data is the post-processing 

call-back. This is a user defined function which is called by the control server just before a 

frame is stored to disk. The function then may examine or modify the data and give it either 

back to the system or save it in its own format or to its own target (e.g. shared memory). 

  

7. THE NGC SOFTWARE FOR THE OPTICAL DETECTORS 

As described in the Introduction, optical and infrared detector controllers operate in different 

ways. For instance, optical detectors require an active intervention of the control server during 

the exposure (e.g. to apply new voltages when wiping, integrating or reading) or an interface to 

different kinds of shutters (for opening and closing, open/close delay times calculation, status 

checking).  

As a consequence of the operational differences between infrared and optical instruments, at 

higher level the NGC software has to be divided into the two different branches, while the low 

level software - operating system and drivers - can be common to both infrared and optical 

applications thanks to the similarities of the detector controller hardware. 

7.1. Finite state machine model 

During the design phase of the NGC software for the optical instruments (NGC Optical 

Software, from now on NGCOSW), analysis has shown that detector controllers can be modeled 

as a finite state machine [6], i.e., by a model of behavior composed of a finite number of states, 

transitions between those states, and actions (activities that are to be performed at a given 

moment, e.g., when entering or exiting a state or during a transition). 
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Figure 7 Example of a state machine 

 

 

The usage of the finite state machine model has several advantages: 

 it has a powerful ability to implement decision making algorithms; 

 it is easy to create (it is basically defined by a table of possible states and relations among 

them, a “state machine configuration table”); 

 the design process involved in creating a state machine improves the overall design of the 

application; 

 restructuring is very easy (it is basically just a redefinition of the state machine 

configuration table); 

 it is the only model that allows “easy” code generation (meaning: the code implementing 

the state transitions). 

 

The design has been implemented using UML (Unified Modeling Language) [7]. Finite state 

machines can be easily described in a graphical format by UML state charts (Figure 8 shows the 

UML state chart for a basic NGCOSW process, Figure 9 shows the complex UML state chart 

for the exposure coordination process).  
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Figure 8 UML state chart for basic NGCOSW process 
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Figure 9 UML state chart for NGCOSW exposure coordination process 
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From a UML state chart it is possible to generate the state machine configuration table in an 

automatic way. Plug-ins for case tools like Enterprise Architect [8] and MagicDraw [9] have 

been developed at ESO for such a purpose.  

The ESO wsf (workstation software framework) tool [10] has been used for the automatic 

generation of the code from the state machine configuration table. Note that wsf generates the 

code handling states, state transitions, messages, commands, error conditions, and so on, NOT 

the actions to be performed while moving between states (i.e., actions needed to drive an 

exposure). The implementation of these actions has to be performed on the generated code and 

depends on the characteristics of the detector, shutter, instrument requirements, etc. 

7.2. Results 

The amount of code generated for optical NGC consists of ca. 82.000 lines (27% of which is 

test software
1
) and corresponds to the code developed for FIERA, the previous optical detector 

controller produced by ESO. 

The big difference in comparison with FIERA is that 78% of the NGCOSW has been 

automatically generated.  

The whole NGCOSW design process has shown that the UML based modeling was an 

enormous improvement in terms of: 

 code robustness: the finite state machine model forces a well structured design and can 

be “naturally” implemented in a test-driven development environment; 

 flexibility: the finite state machine model can be easily modified in order to implement 

new requirements; 

 maintainability: the code to be “manually” developed concerns only the actions 

required to drive a detector and is well confined (and defined); 

 development time: the combined usage of UML and wsf has decreased the development 

time by generating a large portion of the code. 

                                                 
1
 For comparison: NGC Base Software consists of 220.000 lines of code (test software = 16%) and NGC 

IR-SW consists of 36.000 (test software = 12%) 
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8. GRAPHICAL USER INTERFACES 

A number of graphical user interfaces have been developed to interact with the system.  

8.1. NGC Hardware Control GUI 

 
Figure 10 shows the basic panel to control just the NGC hardware. This does not contain any 

exposure control and is used as sub-application of the NGC optical software. 

 
Figure 10 NGC Hardware Control GUI 
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8.2. Infrared Engineering GUI 

 
Figure 11 shows the engineering GUI for infrared applications. This is also used as stand-alone 

tool for hardware development as by applying a default acquisition process “exposures” can be 

started and quick series of the raw-images plus mean-value and standard deviation can be saved 

to FITS-files for off-line evaluation.  

 

Figure 11 Infrared Engineering GUI 
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8.3. Optical Engineering GUI 

 
Although the standard way to interact with NGCOSW is via VLTSW commands, a graphical 

user interface has been developed to easily operate the software in standalone mode (for 

instance, for testing in the lab). 

Via the “System Status and Control” area the system can be started, put to standby and online, 

and terminated. System status is also monitored. 

To perform an exposure, appropriate parameters like the exposure mode, time, type (normal, 

dark), etc must be set in the “Exposure Setup”, and then the appropriate actions must be 

performed by using the options shown in the “Exposure Control” area. 

By moving the cursor on an area or button, a message help concerning the pointed object is 

shown in the “help area” at the bottom of the panel. 

 

 

Figure 12 Optical Engineering GUI 
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8.4. Video Display 

 
Figure 13 shows the video-display application used to visualize images in “real-time” (RTD - 

RealTimeDisplay). 

 

Figure 13 Video Display 
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8.5. Clock Pattern Editor BlueWave 

For the generation of the detector clocks and sequences, a graphical editor tool has been 

developed at ESO: BlueWave. The picture shows a screenshot of the tool: the area on the left 

shows a sequence (as text), while the area on the right shows a clock pattern (as graph).  

 

Figure 14 Clock Pattern Editor BlueWave 
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