Limits on Reciprocity Failure in 1.7mm cut-off NIR astronomical detectors

Wolfgang Lorenzon T. Biesiadzinski, R. Newman, M. Schubnell, G. Tarle, C. Weaverdyck

Detectors for Astronomy, ESO Garching, 12-16 October 2009

Funding provided by

DE-FG02-08ER41566

The Need for Precision Photometry

- Recent discovery of accelerated expansion of universe has started revolution in cosmology
 - evidence from SNe, galaxies, galaxy clusters and CMB
 - implication: ~70% of universe is made of "Dark Energy"
 - very little is known about nature of Dark Energy:
 - Λ , quintessence, GR break down, higher dim, axions, etc
 - any option has profound implications
- To determine nature of Dark Energy is difficult task
 - combination of several observational techniques are needed:
 - SNe (standard candles), weak lensing, galaxy clusters, BAO
- Must rely of accurate distance measurements over cosmic scales

 \rightarrow rely on precise photometry (1%-2% level)

• Photometric calibrations require observations of many standardized stars over a wide range of magnitude

 \rightarrow rely on complete understanding of the linearity of the detectors

Reciprocity vs Saturation

 NICMOS arrays (2.5 mm cut-off HgCdTe) on HST exhibit a 5-6%\dex flux dependent non-linearity

 exhibits power law behavior, with pixels with high count rates detecting slightly more flux than expected for a linear system (and vice-versa). distinctly different from wellknown total count dependent non-linearity for NIR detectors that is due to saturation as well is filled.

 linearity is maintained within ±3% up to 80% of the full integration capacity

UM Reciprocity Setup

• Dewar extension attaches to existing IRLabs dewar

• no shutter required for HgCdTe (for CCDs shutter is important)

UM Reciprocity Setup

Reciprocity Measurement Scheme

Reciprocity measurement:

- use fixed geometry for detector and monitoring diodes
- sequence of calibrated fluxes
 - using photodiode (PD): independently shown to be linear
- Up-The-Ramp (UTR) images
 - take separate bias frame in dark and subtract that from the UTR images
- adjust exposure time to keep total count in detector constant
 - avoid standard detector non-linearity
- take ratio of average detector flux / PD current (normalized detector flux) and plot vs PD current (count rate)
- look for a ~5%/dex effect

Calibrations and studies:

- **PD linearity** with dynamic range: 10⁵ w/ six pinholes
- PD stability: temp. stabilized at ~120 K
- detector stability: temp. stabilized at 140 K (±10mK)
- Illumination stability: temp. controlled feedback diode \rightarrow lamp output stable <0.1%
- persistence, timing, bias drifts, noise, frame-to-frame variations, long term drifts

PhotoMax Lamp &

Broadband Filter 850 - 1100nm

Aperture Wheel

Integrating Sphere

with Vis and NIR

Photo Diodes

Optical Fiber

Photodiode

Neutral Density Filters

Baffle Tube

Baffle Tube

Detector

Challenges to reach good Repeatability

Photodiode Linearity Calibration

- Pinholes used: 3.3mm, 1.0mm, 333μm, 100μm, 33μm, 10μm
- Same slope fits data over $\sim 10^6$
- Lowest light levels have largest error; dominated by read noise in PD

Deviation from linearity is better than $\pm 0.5\%$ over $\sim 10^5$ in light flux

Photodiode Stability

InGaAs (NIR) diode: G10899 Silicon (visible) diode: NT53-371 NIR Diode Temperature Dependence Visible Diode Temperature Dependence 5.840 63.7 5.835 63.6 5.830 (Yu (P 63.5 5.825 rent ਹੋ 5.820 J 63.4 0.5% 0.7% Diode ō 5.815 NIR . ≶ 63.3 5.810 63.2 5.805 5.800 🗀 125 63.1 L 130 135 140 145 150 130 135 140 145 Diode Plate Temperature (K) Diode Plate Temperature (K) **25K 25K**

- Data taken simultaneously
- The PDs display a temperature dependence of < 0.1%/K
 - InGaAs and Silicon PDs: opposite behavior
- PDs temperature controlled to <1K

Lamp Stability

 quartz tungsten halogen lamp shows instabilities of ~3.5% over a 25 hr time interval (in constant current mode)
 → can be reduced to <0.1% with active feedback over 8 hour period

Other Systematic Studies

- Light Leaks
 - signal ports shielded
 - detector shielded \rightarrow only 'sees' light from Integrating Sphere (IS)
- Persistence
 - go from low to high illumination (varying pin holes)
 - wait 30 min between each exposure sequence
- Timing
 - read time set in Vodoo needed to be calibrated (to <0.1%)
 - calibration 10 μs (shortest read: 211 ms)
- Long term drifts (detector temp drift, electronics temp drift?)
 - 'dark' reference diode tracks bias voltage drift
- PD noise
 - minimized by replacing cables (shorter and shielded)
- Frame-to-frame variations (probably bias voltage fluctuations)
 - tracked well by reference pixels
 - averaging many frames to reduce this noise
- Aperture heating
 - high light levels can heat up pin holes (glow in NIR PD detectable)
 - use gold coated pin holes (gold towards IS)
 - can be removed by using darks with light on

Detector Images (H2RG #102) fill well to about half of full well • select region of – uniform QE low on defects and hot pixels • mask pixels that are 3σ above or below mean (4%) \rightarrow 2% of pixels are clipped + adjacent pixels (2%) sum up all 'good' pixels ٠ divide by NIR PD signal ٠ (sensitivity well matched to detector) No AR coating 1.20 InGaAs NIR diode, G10899 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 Silicon diode: NT53-371 1.00 1.0 **OE** (uormalized) 0.60 0.40 ٠ E. Absolute QE 20 0.40 H2RG #102 - 060518 0.20 H2RG #102 - 060519 0.00 300 500 700 900 1100 1300 1500 1700 0.0 500 1000 1500 wavelength (nm) Wavelength [nm]

H2RG #102 Response

- The response of H2RG #102 (1.7 mm cut-off HgCdTe) drops by 1.2%/dex as input flux increases
 - \rightarrow opposite behavior to NICMOS 2.5 mm cut-off HgCdTe (5%\dex)
 - \rightarrow but much smaller effect
- When ratio taken vs visible PD → response drops by 2.0%/dex (twice as large!) → (NIR / Vis) PD signal must vary as input flux increases!

NIR / Vis PD Signal

- (NIR / VIS) PD current varies with increasing light intensity (-1.3%/dex)
 - \rightarrow flip Vis & NIR diodes (geometrical effect): unchanged
 - \rightarrow replace Vis with 2nd NIR diode (spectral effect): improvement
 - \rightarrow replace 250nm with 50nm bandpass (spectral effect): improvement
 - \rightarrow replace lamp by narrow band laser

(NIR / VIS) PD current improves from $-1.3\%/dex \rightarrow +0.4\%/dex$

H2RG #102 Response

- The response of H2RG #102 (1.7 µm cut-off HgCdTe) exposed to narrow band laser light **drops** by (0.23±0.1)%/dex as input flux increases
 → but much smaller effect than with broad band (250 nm) filter
- Device shows some variations across the detector

H2RG #102 Response

- The response of H2RG #102 (1.7 mm cut-off HgCdTe) is (-0.23±0.1)%/dex (NIR) and (0.091±0.097)%\dex (Vis) as input flux increases
 - \rightarrow slight difference between NIR and Vis PD calibrations
 - \rightarrow but overall smaller than 0.25%\dex

Summary and Outlook

- Reciprocity failure on a 1.7 μ m HgCdTe detector appears < 0.25%/dex
 - much smaller effect than seen on NICMOS
 - consistent with zero within precision of our apparatus
 - many studies performed on effects that could mimic reciprocity failure
- Will measure additional 1.7 μ m HgCdTe detectors for reciprocity failure
 - use narrow band light source to perform studies
 - use lasers at different wave lengths to study wave length dependence
- Can be performed on HgCdTe, CCDs, ...
 - a detector specific mounting plate needs to be machined
 - \rightarrow allow for fast turn around time if detectors available only for short time
 - ready for cross checking devices from DCL at GSFC