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The murkiness of CCD materials:
Optical modeling of QE, fringing, and absorption
in LBNL, CCDs
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PROLOGUE: Atthe SDW meeting here in 1999, Jim Beletic
asked for a show of hands ---

“How accurately do you think you can
measure the quantum efficiency of a CCD ?”

% 10% ?
| = 5% 77
\ 2 1% 77

Successively fewer hands went up

ARproblem_simple_030ct09.eps
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Since then we’ve learned to measure the reflectivity, which can be
done absolutely and easily. (R doesn’t depend on a standard PD!)
-- and the mid-region can be used to normalize the QE measurements.
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(Figure from Maximilion Fabricius’ diplomathesis)
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First we built the LBNL QE Machine . . .
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Jens Steckert’s diplomathesis; for all practical purposes built
by Jens under Armin Karcher’s supervision
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. .. and then the reflectometer. THIS IS AN ABSOLUTE MEASUREMENT
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Maximilian Fabricius’ diplomathesis; for all practical purposes
built by Maximilian under Armin Karcher’s supervision
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The amazing air-powered action machine!

quad photodiode
array —
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We’ve recently attempted to model a coated CCD better:
Calculate the reflectivity, transmission, and quantum
efficiency of a CCD with (possibly) absorptive coatings.

Incident medium /
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(usaatly vacwum) - Complication #1 Complication #2
nonabsorptive
RI, Treat the CCD substrate as a “film,” so as to
Possibly more lyery CAICUIALE the absorbed fraction (= QE) and fringing
Silicon dioxide
. \ Goals:
L Ty #¢ Find an optimal antireflective coating
(R+Tar+Aap)ly=1 (maximize QE)
0y, %% Understand absorption in the different films

7| o> |oc cos Osi
Aty

% Sort out reflection from QE and photons
lost elsewhere

Silicon substrate
index ng;, absorptive

i Tsil . :
Needaﬁom/_'face model | (S}gfyfﬁ Agi Complication #3: Front-surface boundary

. + = ° o
Final medium ! $§§ Ko COIldlthIlS
(so far, vacuum) cO . . .
iy Apology: Why didn’t I just use a commercial
ARproblem_simple_030ct09.eps p aCk a g e ?
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In what remains of my 15 min, all I can do
1s show some results.

Incident medium

ey vacuum) I’1l specialize to the LBNL CCD, since it
nonabsorptive has two absorptive layers (besides the
substrate). But code 1s general.

(Possibly more layers)

Silicon dioxide\
ITO/, \ <— One of our problems 1s the in-situ doped
ISDP

Tarly polysilicon (ISDP) backside contact. It was

(R+Tar+Asro=1 difficult to find the appropriate complex

051 | cos O, index of refraction.

Silicon substrate
index ng;, absorptive

/' i

Need a front-face model :

Final medium
(so far, vacuum) .
index ny, nonabsorptive !

ARproblem_simple_030ct09.eps
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The 1ndex of refraction 1s complex:

(gabs — )‘/47Tk)

Ne=n — 1k

And sometimes hard to find. In addition to
the usual literature, the SOPRA database 1s
a gold mine.
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We were lucky enough to
have old data from Bill
Moses (LBNL), who made
a systematic study of the
effect of ISDP thickness
on photodiode quantum
efficiency.

Of the 13 candidate
SOPRA tables,

“SIPOLY 10.NK” provided
the best description of the
Moses data.

<— Naked S1 with ISDP
coat, on diode at 300K

1000 1100 1200
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e 5
5 e
c Imaginary part of index of refraction :

- blue solid: £ for Si from Edwards (25 C) -

4 n red dashed: k for SOPRA poly10 -
J(ne)3E s
2F 3
i Tail on SOPRA poly10 absorption -

1 = coefficient is VERY important E
OE ||||||||| T T R N W N [ v vy Tu-u_i ———— ._.__--"l—""'—-—-Lma_E-
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Wavelength (nm)
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The full calculation looks like this:

| ‘ hricl eés (depleted) 250 urﬁ ~~.; 3

0.9 ISDP = 200A SDPRA oly10 =
=298.1K = E

0.8 E
0.7 | E
= T i
=~ 0.6 E
= E
§05 =
S E
E 0.4 Bill Moses’ 200 ISDP =
03 Teoat — T=QE _§

1 - R - T,y (absorbed in coat) E

0.2 Boxcar averaged 3
01 T (transmitted) ——= e
0.0 E T T T A vn rwwen e L SOGUUOTO PO xxmuuxuuuluuuxmuu‘ug
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si_si_poly10_300K-all.eps Wavelength (nm)
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(Side lesson: cooling 1s hard on the red response)

10 RN R L L L L L I IR A=
0.9 - Substrate thickness (depleted) = 250 um E

' i1 1 ISDP =200 A SOPRA poly10 E
0.8 .+ ¢ : Temperature = 133.1 K= -140.0C E
0.7 ,, E
=0.6 s :
= :
£03
204 : Bill Moses' 200 A ISDP E
03\ | \£ Teoat — T = QE =
i 1 - R - T,y (absorbed in coat) =

0.2 Boxcar averaged =
0.1 T (transmitted) — =
0.0 0%, AL Lt L T e oLl il E

20073007 74007500 7600 700800 0001000 1100 120

si_si_poly10_133K-all.eps
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Realistic modeling of the present SNAP CCDs
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. ﬂ l-k
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:00,6 Substrate thickness (depleted) = 250 um
o Si10» thickness = 800A
.5 0.5 ITO thickness = 550 A
3} ISDP =200 A SOPRA poly10
[_%‘04 ;

Temperature = 133.1 K= -140.0 C

_IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIII

0.3 Absorbed in ISDP
0.2 Absorbed in ITO
0.1 £ Boxcar averaged QE “
' T (transmltted) ——
OO0l b T e T B OSSR R
200 300 400 500 600 700 800 900 1000 1100 1200
Fversion_total_133K.eps Wavelength (nm)

Difference between 1 - R and “central” QE 1s absorption in the ITO!
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BERKELEY LAB

g 05 QE PD-mode, room temperature
L
G 04r QE PD-mode cold (-140° C) —=
0.3 / QE CCD-mode cold —=
02+t ¢
0.1 [,
0.0 1 1 1 1 1 1 1
300 400 500 600 700 800 900 1000 1100 1200
ge_R_hiroshima_2.eps Waveleng’[h (n m)

Actual measurements by Maximilion Fabricius
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BERKELEY LAB

Problem i1|1 the blue!

s 05 QE PD-mode, room temperature

QE CCD-mode cold

G 04 r // QE PD-mode cold (-140° C) —|

0.2/ {
Sk
0.0 ] ] ] ] ] ] ]
300 400 500 600 700 800 900 1000 1100 1200
ge_R_hiroshima_2.eps Wave | e n gth ( n m )

An earlier AR coating recipe had worked fine; here there were
also problems with condensation onto the CCD. We take this
failure as diagnostic rather than as a problem with the modeling I5
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Fringe region detail

1.0 g AR LR N R A AR AR AP W AR A E

0.8 & :

TN,
3”""!"‘““”~“”“””%%%‘

T 3

0.1 & | E

0.0E |||||||| Loviviiiy v ||||||||||:| ||||||||| Loy Lov iy Loy Liviviiiy [vvviiiy E

980 981 982 983 984 985 986 987 988 989 99
Fversion_fringedetail _144K.eps WaVelength (Ilm)

Note “conspiracy” of reflection and transmission
to make the fringes less violent!
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Calculation for a traditional thinned CCD:
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1.0 grerm [V [PV [V AAEEEEEY R T AL AR RAARRRRE =
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0.8 —i
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Shows widely spaced fringes extending to below 700 nm.
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Spacing of fringes: o\ = A\?/2nd
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It 1s surprising at first that the thickness of ITO and

S102 films can be adjusted to get such good response
8 e P e e e e T e e

Detectors for Astronomy 2009 Workshop 14 October AM [, SN\ YW

@)

Index of refraction (real part)
N

2 |
nsio, |
0 T S S H
200 400 600 800 1000 1200
Si_Si02_Ti02_050ct09.eps Wavelength (nm)

... and the I'TO index shape doesn’t track that of Si very well.
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Roger Smith recently told us about the miracle coating, Ti02:
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@)\

Index of refraction (real part)
N

2 |
n SiO, ]
0 T (S O S
200 400 600 800 1000 1200
Si_Si02_Ti02_050ct09.eps Wavelength (nm)

This time the tracking of the Si index is quite respectable!
20
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(Thicknesses not optimized)

21
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. and this 1s a good place to stop!

1.0 g S FUTURE = — S .

0.9 PRESENT E

0.8 110, Wmﬂm

- . —

N, ITO p AS'T %

f o 20 um 250 wm _%

S \ E

£0.5 Stay away from T-unstable “\M't E

= fringe regions with bad PSFs! ’{y"‘ll :

S 0.4 I .

[ !.

0.3 E

Bandpass-Gunn Z :

0.2 =

0.1 | il .

0.0 E . '“.l,llmid!i" E

200 300 400 500 600 700 800 900 1000 1100 1200

superGunn.eps Wavelength (nm)

23



S

f(reeoeer ‘m

Detectors for Astronomy 2009 Workshop 14 October AM @ SNAP L

SPARE SLIDES FOLLOW

24
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N 1s the complex index of refraction in a single transit of the jth film:
ne=n—1ik (L = \/4mk)

(The sign convention for the absorptive part
1s not the same 1n all books-- and has been
changed since my previous calculations!)

25
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- (v = (n./c) cosh)

,/ reflected wavefront
/

a -
Surface a - E, = Ey + Er B, =vo(Ey — Er1)
= En + Ein =y1(En — Ei1)
m i Boundary
Ll conditions
Surface b Ep=Ep+Ep  By=vi1(E — Ep)
substrate =Ep =YsEn

ng

The approach 1s standard: multiple reflection is taken care of by treating the
transmission/reflection at an interface as a boundary condition problem. For

normal incidence on a single film, £ and B on entry and exit are related by
7 sSIn 51
E, cOS 01 — | ( E} E;
— nd/ € = M,

Ba Bb Bb

i (nei/c)sind;  cosdy
26
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7 sIn 51

0
R P (AR - s
Ba Bb Bb

i (nei/c)sind;  cosdy

0, is the complex phase change in a single transit of the jth film:

0j = (dj/X)ncj = ORj +101; «— Note that 07 is negative!

If there are N films, we just multiply the transfer matrices:

E, Ey Ey
= M1M2 c e MN =M
B, By By

27
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BERKELEY LAB

So: light with amplitude / is incident on film from medium with 7o
(real for initially incident light)

It 1s reflected (amplitude r) and transmitted (amplitude 7) by the film,
emerging into a substrate with index ns (also generally complex)

(nomi1 + nonsmig) — (Mo + nsm22):> R = ny MQ

/]" f—
(moma1 + nonsmas) + (Ma1 + Nsmos)

21 — T = n, |t|°
(ngma1 + nonsmaz) + (Mo + ngmgg)

2

m 1s the product of all the
relevant transfer matrices

t=

28
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There’s one more nuance not usually encountered in normal thin
film analysis: What if e %7 overflows the computer? (Remember
that 1t 1s negative, and for blue light in the substrate it can be
hundreds of thousands)
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COSO = COSOpRCOSt0;r — Sin 0p Sin 207

— c0S0p cosh 0; — 2sin dp sinh 0;
= e "1 [cosOr (1 + €¥7) 4+ isindg (1 — e?1)]
= e %" Fcos (6g, 6;1)

And similarly for sin 0. So replace d;; with -10 for 67, < —10
and write factored matrices:

M,

e“sfj/\/lf

29
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Then
, (nomn + nonsmm) (m21 -+ nsmgg) - Absorptive
- F substrate doesn’t
(nOmll T nOnSmlz) - (m21 -+ nsng) affect reflection
n 2N exp (Z 01 ) If there’s a really

absorptive substrate,

(nOmll + n0n8m12) + ( ng) no transmission

30
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For wavelengths less than about 900 nm, there IS no reflection
from the “front” surface!

And there 1s very little reflection from the ITO-ISDP interface at
any wavelength (zero for > 400 nm, 0.07 at 350 nm).

E, Eyar Added later:
( ) = Magr ( ) Maybe that should be 0.07%
So: B, b AR

1. Let Mar = Msio,M10; calculate R and T with a Si substrate.

2. Let M ar = Msio,MiroMispp ; calculate R and T with a Si
substrate.

3. For the complete CCD, calculate R and 7 with an AIR substrate.

— Subtract appropriately to find absorption in I'TO, ISDP, and S1 (=QE)

31
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ne=n — ik,

nd
=
S

Red 1s from Janesick and
tabulated »n and & for
| A silicon. Note inflections at
Surf g
effects i A%/ short wavelengths.

dominate ! —— A
4—'// = L 300 K

—
=
)

-—

=
=
—

Absorption lengt@um)
=
=
DO

100 / ~Z r T dependent curves from
/7 I I . .
10_1 F Z : : 'I‘ransparency, RaJkanan, Slngh, and
| | interference Shewchun. Note
| | °c, . .
2= | :_are, L monotonic behavior,
o R S R I ‘ unlike the tabulated case.
200 300 400 500 600 700 800 900 1000 1100
Si_abs_T-col.eps Wavelength (nm) +
Atmospheric l;j\i : h)18417rfr\ri
cutoft (silicon bandgap at 150 K)

32
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BERKELEY LAB

So in contrast to previous modeling:

© Results at the blue end (< 500 nm) can be trusted

somewhat, since the S1 + ISDP (SOPRA poly10) results
agree with Bill Moses’ measurements (diodes)

© Absorption in the ITO and ISDP are clearly separated, at
least for wavelengths < 900 nm

@ There is a formal problem in the separation, especially
important at wavelengths > 900 nm. Before proceeding, I
would like to try to solve that problem

33
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B E
E [
0 =
"o Eq=Ey+ Er1 Bg= Yo(Eo — Er)

1 =FEq + E; =v1(Ey — E;
film 1: n{ i1+ Eil Y1(Enn — Ei1)
(M M,. )

. __ E =Ep+En Bi=vi(En—Ep)
. = E = E»rh — FE
fllm 2: n» iu2 Ys( 2 iu2

My M. ..
Ep=Eiz+ E3 Bp=v,(Eiz — E3)
= Ey3 = vsEr3
substrate
ng

Eparallel_2film_talk.eps ‘ transmitted wavefront

34
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(v = (ne/c) cos6) '

BERKELEY LAB

The phase shift \delta as the light goes
through the film once 1s nc(2pid/\lambda)
nc =n@®ik

Given all those complex indices, I wanted
to sort through Maxwell’s equations to see
how it all worked.

Example: the intensity /, the magnitude of
the Pointing vector, 1s
I \propto Re(E*B) \propto Re(nc EE*)
\propto n EE*
Is that the real part of nc or Incl??
Turns out to be real part.
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I x R(E*B) x R(n.EE*) x nEE"

Is that|n¢|or J(n:)??
— Turns out to be real part.

1. 1s the complex index of refraction in a single transit of the jth film:

36
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24 Indium-tin oxide (ITO) s
22 XA -
N - ]
520¢0 i E
'g C TN i
= 1.8 TR 5
> J N R
Z - s L ]
'8 16 — NG el ]
& A B .
£ I < ]
é 1.4F Gerfin & Grétzel | .
i parameter «€«—— | T N
. fitting range | .. C
]ﬂ2_ ; R
1.0 e - ]
200 300 400 500 600 700 800 900 1000 1100
Wavelength (nm)
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