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First step: Raw Data

Useful if raw frames are human-readable: you don’t have to wait until end of a

long exposure + data reduction to see what might be there:
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... Which is easier to intuitively understand?
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Data processing: The pipeline

“One size fits all’
doesn’t work to get the best of the data:
the reduction needs
to be tailored to the data

Pipelines are often a monolithic ‘black box':

« users don’t know how different parameters affect processed data
» no way of checking intermediate stages

It helps if the pipeline is modular:

* users can exchange modules if they think they have a better version
» they can look at output of individual steps to see the impact

This is the philosophy e.g. behind the design of the KMOS DR software



Data processing: Checking the Calibration

Spectral offset of a line from mean position
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Data processing: A resampled frame

allows observer to quickly & easily spot source features, since whole
frame is visible simultaneously; easier than searching through a cube.
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Creating the cube: Interpolation

Standard view:
create mathematical functions (e.g. polynomials) which enable one to correct spectral &

spatial curvature on the detector. However many steps required, correlated noise, bad pixel
growth ...

Alternative view:
create look-up tables which associate each measured value with its spectral & spatial

position in the final (reconstructed) frame
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Creating the cube: A single interpolation in 3D

you can combine frames during interpolation

choose sampling of reconstructed data (e.g. to match another instrument)
smooth data during reconstruction (e.g. if data is really noisy)

. efc...

various methods applicable:

‘nearest neighbour’ (zero order) — no interpolation actually needed; noise properties of raw data
are preserved. Perhaps a good option for really faint sources, if some compromise on
spatial/spectral exactness is acceptable.

‘linear’ (15t order) — e.g. kriging (a standard method in geophysics), which is an ‘optimal linear
interpolator’, in the sense that it yields the smallest uncertainty on the interpolated point. Makes use
of partial correlation between nearby pixels (i.e. PSF information); uncertainties are provided by
default.

‘quadratic’ (2" order) — e.g. Modified Shepard’s method. performs quadratic interpolation from 15-
20 data points within a specified radius.

The principle was tested on NACO
prism data; will next be attempted
on SINFONI data to be implemented

for KMOS




Visualizing the reduced cube: QFitsView

(by Thomas Ott, MPE)

A great tool that allows to visualize and analyze any standard fits data which has a
cartesian coordinate grid. New release available since yesterday!

E.9. 400MB mosaic of the Galactic Center
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Emission Line Extraction: flux, velocity, dispersion

DO P OO0
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Moments

quick & easy

copes with arbitrary line profiles in a consistent way
works well for high signal-to-noise

strongly affected by outliers

results can depend on range within which moments are calculated

Gaussian Fitting

quick & easy

less affected by outliers

sometimes tries to fit a single noise spike
an a priori line profile assumed

Convolution of unresolved line profile with a Gaussian

slow, particularly when calculating uncertainties
robust against noise spikes (which can easily be rejected)
dispersion is intrinsic (i.e. instrumental broadening is by definition taken out)



Emission Line Extraction: what are you actually measuring?

centroid position of full profile

Moments:

Gaussian & Convolution:

flux

__ Gaussian dispersion

0.5~ _ Moment dispersion

Moment velocity
Gaussian velocity

flux

Moment velocity
Gaussian velocity

2.1 2.12
wavelength (micron)

position of dominant component

Gaussian (fitting or convolution)
Is consistent each time, but
misses the red tail

Moments are affected by noise —
need a threshold clipping, but
this may also clip off parts of the

line profile

There is no better solution: it
depends on what you want to
measure!




Emission Line Extraction: LINEFIT

* Flux, velocity, & dispersion maps are calculated via moments &
convolution of unresolved line profile

 Error maps are generated based on derived or input error cube
using Monte Carlo techniques

== Linefit v5.3 i S
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An example: modeling rotating disks at z~2

= We want to measure automatically (i.e. robustly and fast) the main dynamical
parameters of the SINS galaxies with prominent rotation signatures using the full
dynamical information from IFU:

* Rotation centre, Scale length, Inclination and Position angle
« Total dynamical mass
* 0y the dispersion term not due to rotation

= To do that we search the disks model that better reproduces the features
observed, with a x2 minimization using a Genetic Algorithm simulating
evolution by natural selection:
« No good initial guesses needed

« Smart way to converge in a reasonable time without mapping the whole
parameter space

 Efficient in finding the true absolute minimum even in a very complex topology




Genetic fitting of the SINS galaxies

« An exponential disk model is compared with both the
observed Velocity and Dispersion maps of the Ha line
emission via Genetic fitting

* The disk model is convolved with the observed
beam, reduced to the pixel sampling of the
observations and compared with the observed maps
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The Tully-Fisher relation

The T-F relation correlates the absolute magnitude (or stellar mass) of disk galaxies
with their maximum rotational velocity. Therefore it directly links the mass of the
dark halo with the stellar mass of its disks.

Bell & de Jong (2001)

z < 0.7
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Conselice et al. (2005)
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* The limited data at
higher redshift (e.g.
Conselice et al. 05;
Kassin et al. 07) suggest
that the zero-point of the
relation evolves only
modestly in luminosity at
higher redshift, and that
no evolution is found for
the stellar mass TF
relation up to z=1.2



An example: The z~2.5 Tully-Fisher relation

Thanks to SINFONI 3D data we can push the study of the Tully-Fisher relation
evolution up to z~2.5, placing observational constraints on the assembly history of
the halos and stellar masses

4
» We observe a remarkably low
T AT I scatter compared to z~1
= . Fi .'- 1
® -5 P
e il e - * The slope seems not to evolve

s Simulated i A EE ' since z=0, but a shift of the zero

' point of the relation at z=2.5 is
detected (a factor ~1.25 higher V__,
for a M=6-1010 M. galaxy)
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log(M./M,)

At those redshifts different models
predict a zero-point shift of the
relation, as observed, e.g.:
« Sommer-Larsen et al. 03, 08
« Somerville et al. 2008
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Cresci et al. 2008



Summary

 IFU 3D data are providing a great
wealth of information, but require ad
hoc tools

* Pipeline processing: modular
pipelines, human readable data and
step-by-step checking and diagnosis
allow to exploit the best from the data
and avoid time wasting

« Visualizing and extracting information
from your cube: many nice tools
available, but no unique recipe

« An example of application: thanks to
3D data, it is now possible to study and
model the dynamics of z~2.5 galaxies

* An evolution of the zero-point of the
Tully-Fisher relation is detected at
z~2.5

... but if you are still really desperate...
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1) Coloryour glasses with crayons, markers, or paint Materials:
2 Cut the plic &S out arsund the outside Black lines
3) Cut out the red and blue eyepieces tape or glue

d) Tape or glue colored cellophane to the back of the glasses scissors
to cover the eyehcles. Use red cellophane on the left
#yepiece, and blue on tha nght eyepiece.

5) Fold the Haps on the earpieces and tape or glue to the glasses,
like shown below,

6] When the glue's done drying. put on the glasses and explore
our web site!
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