Science Data Reduction Pipelines at NASA 30 Years and counting

> Don Lindler Sigma Space Corporation January 24, 2007

### International Ultraviolet Explorer Joint Project between NASA, ESA, and UK

- Launched on January 26, 1978
- Turned off on September 30, 1996
- 18.7 years of operation
- 104470 Spectra
- 9600 astronomical sources



## **IUE Pipeline and Archive**

- First astronomical and satellite facility to deliver fully reduced data within 48 hours to the worldwide community of scientists
- the creation of the first worldwide astronomical reduced-data archive delivering 44,000 spectra per year (5 spectra per hour) to astronomers in 31 countries



## **IUE Pipeline Development**

- Utilized NASA/JPL VICAR system (Video Image Communication and Retrieval)
- VICAR ported from IBM mainframe to a Sigma 9 computer.





Much Better

## Why choose VICAR?

- Analysis Tools for calibration
- Modules for geometric and photometric correction of images

#### BIGGEST PROBLEMS

- Expensive transition from IBM to Sigma 9
- Astronomers were not using Sigma 9 computers

## **Reasons for Success**

- Plenty of Funding!
- Modular coding
- Evolution of pipeline algorithms based on the Science and controlled by the users. Frequent meetings (Three Agency and calibration meetings)
- Astronomers were well informed (IUE newsletter)
- Dialog between astronomers and the observatory staff. Astronomers came to the control center for real time observing.

#### Reasons for Success, continued

- Intermediate outputs supplied to astronomers.
- Data Quality Flags included with output spectra.
- IUE Regional Data Analysis Facilities.

## NEWSIPS

New Spectral Imaging Processing Pipeline

- Consistency between archived products during the extended mission.
- After a long study of application executives, it was developed under MIDAS.
- Move from VICAR to FITS format.
- Improvements in S/N, spectral resolution, and absolute sensitivity.
- Again, plenty of funding!

## Hubble Space Telescope

- Launched April 24, 1990
- Five initial instruments
  - High Resolution Spectrograph
  - Faint Object Spectrograph
  - High Speed Photometer
  - Faint Object Camera
  - Wide Field and Planetary Camera
- Five Instrument Science Teams with Guaranteed Observing Time



## Instrument Team Software Development

• Work began in the late 1970s

- Each team worked independently. Little coordination between teams.
- •HST Launch scheduled for 1983
- GHRS and FOS selected to use IDL as the primary analysis tool/programming language.

## GHRS system was a major success!

- System used as recently as last year to analyze 20 year old spectral calibration lamp data.
- IDL used for data acquisition, archival, pipeline processing, and analysis
- All data raw data easily search and immediately accessible.
- "On-the-fly" pipeline processing
- Rapid Prototyping
- Propagation of errors.



## GHRS continued.

GHRS approach latter extended to FOS, STIS, ACS, and WFC3 instrument development and to some extent COS.
Biggest Problem with GHRS system: Formats defined in the pre-FITS era and before ST ScI formats were defined.

### HST PODPS (First Try)

Hubble Space Telescope Post Observational Data Processing System

- Part of the Science Operations Ground System (SOGS)
- 1980 to 81: 2 inch thick requirements document written by NASA appointed committee
- 1981: Contract award to TRW
- 1983: First software components delivered for a DEC/VMS based system.

#### **PODPS 1<sup>st</sup> try continued**

#### • End User was not involved in the design!



### 1<sup>st</sup> Try continued.

- SOGS used last-generation programming technology.
  - Supply requirements.
  - Detailed Design.
  - No prototyping.
- Non-modular. Fixing a bug in one part of the program can easily generate a bug somewhere else.
- Very little contact with the instrument teams.

## PODPS (2<sup>nd</sup> Try)

- The Space Telescope Science Institute enters the picture.
- They inherit an unusable system.
- Generation of calibration reference files was not part of the system!
- They negotiate with the instrument teams for a joint development. This time with ST ScI oversight.
- ST Scl Staffing increased from the proposed 100 people to around 400 people at launch.

## PODPS (2<sup>nd</sup> Try) continued

- Pipeline software under SDAS (Science Data Analysis System) running under IRAF.
- Prototyping of software by Instrument Teams
- Problems
  - Machine dependent (DEC/VMS)
  - Machine dependent FITS-like data formats (.HHH and .HHD files)
  - VMS FORTRAN extensions used.
  - Intermediate results not available for all instruments.

## PODPS (3<sup>rd</sup> Try)

- Name changed from SDAS to STSDAS
- First stage: Code no-longer machine dependent
- Second stage: Data Formats no longer machine dependent. Changed to FITS.
- Third stage: Development of OPUS

### OPUS

- Operational since 1995.
- Fully distributed for any series of applications.
- Runs multiple instances of multiple processes in multiple pipelines on multiple nodes.
- Easy integration of your own pipeline steps.
- Includes monitoring tools.
- Best of all: The developers of the pipeline modules do not need to know how to use OPUS.
- Complete record of processing included in the output.

#### **OPUS continuing evolution**

- Observation Associations
- On-The-Fly calibration
- Automatic generation of calibration reference files (e.g. darks, flats).

#### **OPUS** sites

- Hubble Space Telescope (HST).
- Far Ultraviolet Spectroscopic Explorer (FUSE).
- International Gamma-Ray Astrophysics Laboratory (Integral)
- Chandra X-Ray Observatory, AXAF
- BeppoSAX X-ray Observatory
- Spitzer Space Telescope, SIRTF
- The Gemini Observatory

#### **Continuing Problem Areas**

 Deciding what enhancements to make when manpower is limited. A well defined decision process is needed with decisions based on the scientific return.



© Scott Adams, Inc./Dist. by UFS, Inc.

#### **Continued Problem Areas**

- Systematic Errors
- Standard Data Quality Flags
  - 8, 16, or 32 bit quantity with each bit representing a different condition
  - Numeric score with each condition representing a different condition. Only the "worst" condition is flagged.
  - Binary

• Analysis software which uses the flags

### The Future?

#### Model Based Calibration

"Calibration based on instrument models has been demonstrated to provide better accuracy than empirical methods, but in addition it also provides a real understanding of the instrument that enables one to maintain it at maximum performance and quickly diagnose any deviations"

Michael Rosa, ST-ECF



Fig 1: The European part of the NASA award winning team, the group at ST-ECF: Florian Kerber, Michael Rosa, Paul Bristow (left to right).

# Award winning Astronomers prefer Model Based Calibration

#### Conclusion

You work hard, develop new ideas, and improve your instrument calibration. At the end of the day, you go home and have a beer. You repeat this day after day. In the end all that really matters is the beer.