Luminous obscured quasars in the HELLAS2XMM survey: the Spitzer perspective

> Cristian Vignali Dipartimento di Astronomia, Universita` degli Studi di Bologna on behalf of **F. Pozzi**

In collaboration with A. Comastri,

 To estimate the physical properties of a sample of obscured Type 2 quasars at z~1-2 selected in the 2-10 keV band from the HELLAS2XMM survey using <u>morphological information</u>

+

<u>multi-band photometry (X, opt, NIR, MIR-Spitzer)</u>

 To estimate the physical properties of a sample of obscured Type 2 quasars at z~1-2 selected in the 2-10 keV band from the HELLAS2XMM survey using <u>morphological information</u>

+

multi-hand nhatometry (Y ant NITD MTD_Spitzen)

Bolometric luminosities & $K_{x,bol} = L_{bol} / L_{(2-10kev)}$ Properties: BH masses Eddington ratios $\lambda_F = L_{bol} / L_{FDD}$

 To estimate the physical properties of a sample of obscured Type 2 quasars at z~1-2 selected in the 2-10 keV band from the HELLAS2XMM survey using <u>morphological information</u>

+

multi-hand nhatometry (Y ant NITD MTD_Spitzen)

Bolometric luminosities & $K_{x,bol} = L_{bol} / L_{(2-10kev)}$

Properties: BH masses

Eddington ratios $\lambda_{E} = L_{bol} / L_{EDD}$

2) To compare the results with other samples of AGN (mainly Type 1, i.e., broad-line), like the SDSS QSOs

SAMPLE: HELLAS2XMM F_{2-10 keV} >10⁻¹⁴ erg cm⁻² s⁻¹ over 1.4 deg²
Optically faint (R>24) sources with no optical identification
→ high X-ray-to-optical flux ratio (X/O>10) sources with indications of X-ray obscuration

SAMPLE: HELLAS2XMM F_{2-10 keV} >10⁻¹⁴ erg cm⁻² s⁻¹ over 1.4 deg²
Optically faint (R>24) sources with no optical identification
→ high X-ray-to-optical flux ratio (X/O>10) sources with indications of X-ray obscuration

ISAAC K_S-band follow-up

SAMPLE: HELLAS2XMM F_{2-10 keV} >10⁻¹⁴ erg cm⁻² s⁻¹ over 1.4 deg²
Optically faint (R>24) sources with no optical identification
→ high X-ray-to-optical flux ratio (X/O>10) sources with indications of X-ray obscuration

ISAAC K_S-band follow-up

• ALL bright in the $\mathbf{K}_{\mathbf{S}}$ band

- All have R-K_S>5 → Extremely Red Objects (EROs), some are extreme
- Most have **elliptical** profiles, two are point-like (Mignoli et al. 2004)

SAMPLE: HELLAS2XMM F_{2-10 keV} >10⁻¹⁴ erg cm⁻² s⁻¹ over 1.4 deg²
Optically faint (R>24) sources with no optical identification
→ high X-ray-to-optical flux ratio (X/O>10) sources with indications of X-ray obscuration

ISAAC K_s-band follow-up

pks0537 #054

1.5

Semi-Major Axis (")

20

pks0537 #091

SED analysis I: <u>Bulge-dominated sources</u> (K_s band) nuclear emission + host-aalaxy emission

✓ Nuclear comp. consistent with K_S upper limits

✓ Nucleus starts dominating at $\approx 6 \ \mu m$

✓ Torus consistent with Silva et al. (2004) predictions -normalized to the X-rays- within factor of 2-3

✓ z-phot consistent with the spectroscopic ones (when available)

from Pozzi et al. (astro-ph/0704.0735)

SED analysis II: Point -like sources (Ks band)

Extincted Type 1 quasar or red quasar template (from Polletta et al. 2006)

✓ Extincted Type1 quasar NOT able to reproduce the data
→ sharp decrease in the optical

 ✓ Good match using a red QSO template

Results (I) : Bolometric correction

k_{X,bol}

- ▲ large spread ⇒
 important to correct
 each source for its
 value
- mean value consistent with Elvis et al.1994

Results (II): Bulge and black hole masses

Bulge-dominated sources

Bulge masses: Ks -band flux density mostly from the host galaxy. M_{bulge}/L_k≈0.3-1 (for old population -Bruzual & Charlot '03)

$$M_{bulge} \approx 3 \cdot 10^{10} - 8 \cdot 10^{11} M_{\odot}$$

Results (II): Bulge and black hole masses

Bulge-dominated sources

Bulge masses: Ks -band flux density mostly from the host galaxy.
M_{bulge}/L_k≈0.3-1 (for old population -Bruzual & Charlot '03)

$$M_{bulge} \approx 3 \cdot 10^{10} - 8 \cdot 10^{11} M_{\odot}$$

8

BH masses: using the Marconi & Hunt (2003) local relation + assuming (M_{BH}/M_{*})_{z=1} = 2×(M_{BH}/M_{*})_{z=0} (Perg et al. 06)

Results (II): Bulge and black hole masses

Bulge-dominated sources

$$M_{bulge} \approx 3 \cdot 10^{10} - 8 \cdot 10^{11} \ M_{\odot}$$

M_{BH}≈2·10⁸-2.5·10⁹ M_☉ Massive black holes consistent with SDSS quasars (see work by McLure & Dunlop 2004)

Results (III): Eddington ratios.

$$\lambda = L_{BOL} / L_{EDD} \approx 0.06$$
Indications that:
• these very massive, X-ray
luminous black holes at
z ≈ 1-2 have already passed
their rapidly accreting phase
• they have reached their
final masses with low
accretion rates
SDSS data from McLure & Dunlop '04

9