The nature and structure of obscuration

Roberto Maiolino Astronomical Observatory of Rome

Guido Risaliti

Arcetri Astrophysical Observatory

Obscuration on large scales (≥100 pc)

Guainazzi+05 molecular rings/disks thin 0.5 host galaxy obsuration log(N_u)<23

Compton thin $A_{V} \sim a$ few mags

Schinnerer+00

dust lanes

Tacconi+

Obscuration on small scales («100pc)

X-ray absorption on small scales: N_H variability

Risaliti+ 02

X-ray absorption on small scales: N_H variability

X-ray absorption on small scales: N_H variability

Dust absorption on small scales: inner radius ~ sublimation radius > BLR

Sy1's near-IR reverberation

Suganuma+06

However X-ray and dusty absorbers generally know each other...

Geometry and structure of the dusty absorber

Uniform dust distribution models

Broad IR SED -> wide range of T_{dust}

Large torus (~100 pc) required... Granato+97

Geometry and structure of the dusty absorber

Broad IR SED -> wide range of T_{dust}

Large torus (~100 pc) required... Granato+97

...but high-resolution 10-20µm data

-> ~pc scale

Jaffe+04 Ponchelet+06 Mason+06

Clumpy models: wide Temperature range on small scales

Type 2

Nenkova+02,06 Elitzur+06 Hönig+06

$$R_{in} = R_{sublimation}$$

 $R_{out} \approx 5-30 R_{in}$

Clumpy models: some warnings

size ~ 0.2 pc ellipticity = 0.6 T = 330 K

gas-dust properties ≠ diffuse ISM

Dust properties in AGNs

Extinction curves give different results

strongly reddened AGNs flattened ⇒ large grains Gaskell+04,06 Czerni+04 (Willott+05)

Dust properties in AGNs

Stability of the dusty absorber

Must cover a large solid angle (~60-80%) \Rightarrow geometrically thick (as observed)

- Radiation pressure Krolik'07

- Warped disk (observed in maser emission) Nayakshin'05, Caproni+06

- Not static, but dynamical stability: outflowing clouds Elitzur+06, Elvis+02,03 Everett & Konigl 00

- Turbolence by SNe Wada+04, Watabe+05
- Nuclear stellar winds Nayakshin+06

s evidence for recent nuclear starburst

Davies+06, Mueller-Sanchez+06 SDSS results -> Heckman's talk

Evidence for alternative geometries

Covering factor versus luminosity

Contrasting results from X-ray and optical surveys

Ueda+ 04, Simpson+05, La Franca+05, Hasinger'06, Barger+05, Akylas+06, Steffen+04

AGN2 / AGN1 ratio decreases with luminosity

Dwelly+06, Wang+07

Ascribe the effect to incompleteness and selection effects see also Zakamska's talk

Covering factor versus luminosity

Alternative approach: use only AGN1s

(but missing obscuration on host galaxy scales)

Covering factor versus luminosity

Alternative approach: use only AGN1s

Iwasawa-Taniguchi effect (Balwdin for FeK line)

Physical origin of the Covering Factor (CF) dependence on luminosity

- + "Receding torus" (increasing R_{sublimation}) Lawrence'91
 - does not match observed trends Simpson'05
 - only for dusty torus
- + Gravitational effect of BH and galactic disk Lamastra+06
 - CF should correlate with M_{BH}
- + Radiation pressure
 - CF should correlate with L/L_{Edd}

Covering factor inconsistency between local and high-z Sy's

Locally Sy2:Sy1 = 4:1 Maiolino & Rieke'95, Ho+97 Sy2:Sy1 = 2:1 Hao +05

7 Resolved X-ray background (<8 keV) Sy2:Sy1 = 4:1

but these are Compton thin!

Compton thick high-z sources certainly exist Alonso-Herrero+06, <u>Fiore+07,</u> <u>Daddi+07</u>, Martinez-Sansigre+06, Polletta+06, Tozzi+06

⇒ Sy2:Sy1 = 8:1

- Either local census of Sy2 highly incomplete
- or steep evolution of Sy2:Sy1 ratio at 0<z<0.7

La Franca+05, Tozzi's talk