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Summary. The dynamics of triple stars and methods for computing the motions
are briefly reviewed: The topics include the statistical properties of unstable triples,
stability limits in hierarchical systems and numerical methods to compute the evo-
lution and the largest Lyapunov exponent of a triple star model.

1 Introduction

Evolution of (point-mass) three-body systems is qualitatively similar in future
and past: the system disrupts (unstable) ejecting one of the stars, in both
direction of time, or it stays bounded (stable) forever.

Consequently any encounter of a binary and a single star, however com-
plicated, eventually leads to ejection of one of the stars leaving behind a
binary.

Known stable triple systems are hierarchical. An interesting case is
high mutual inclination with strong eccentricity variation (Kozai-resonance).
Other cases include: the ‘figure-8’ (quasi-)periodic system, some nearly rec-
tilinear orbits and co-orbital solutions.

The astrophysically most interesting cases are:

1. Systems of three stars that break up after some dynamical evolution.
These may be found in star forming regions.

2. Scattering of single stars off close binaries. These events are important in
the dynamics of star clusters.

3. Stable hierarchical systems. Numerous such triple stars are known in the
galactic field.

Discussions of the astrophysical applications of the three-body dynamics has
been provided e.g. by Valtonen and collaborators [32, 33, 34].
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2 Disruption of Triple Systems and Scattering off

Binaries

2.1 Cross-Sections and Thermal Distributions

An important phenomenon in stellar dynamics is the scattering of single stars
off binaries which has been extensively studied by Hut and collaborators
[13, 14, 15, 16, 10, 11, 19, 12].

In that process energy flows from the binaries to single stars thus heating
the stellar system. In dense systems this prevents the (total) core collapse.

¿From the numerical experiments an approximate summary for the rela-
tive energy exchange (∆) cross-section σ can be expressed as

dσ

d∆
≈ 2πA

(
Vc

V

)2

∆−0.5(1 + ∆)−4, (1)

where the coefficient A ≈ 21 for equal masses, V is the incoming speed of the
third star while Vc is the critical value at which the total energy is zero.

The first comprehensive treatment of three-body scattering was given by
Heggie [9]. An important result was that hard binaries get harder and soft
ones typically disrupt. Here the boundary between a hard and a soft can be
defined in terms of the binding energy of the binary: if the binding energy
is larger than a typical kinetic energy of a single star, the binary is hard.
Otherwise soft.

As a result of the scattering process the final binding energy (B) distri-
bution of binaries is expected to be [9, 35]

f(B) ∝ B−4.5, (2)

while the square of eccentricity is usually nearly uniformly distributed. For
the eccentricity this can be written

f(e) = 2e. (3)

High eccentricities are thus expected to be common in binaries that have
experienced three-body encounters.

These results are valid in the ‘thermal equilibrium’ in which each event
is balanced by an equally probable inverse one [9]. Valtonen and Karttunen
[36] recently used phase space volume arguments to arrive at similar results.

2.2 Probability of escape

The probability of escape of a given star from a strongly interacting triple
system depends on the mass

Pesc(mk) ≈ m−n
k /

∑

ν

m−n
ν , (4)
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with a value of n ≈ 2 applicable in typical triple interactions. This result can
be derived from phase-space volume-integrals (in agreement with numerical
experiments), and it explains e.g. the fact that the mass ratio distribution
varies with the spectral class [35].

However, if considered in more detail, the escape probability exponent n
depends significantly on the angular momentum of the system. More precisely,
one may write

n ≈ 3/(1 + λ/3), (5)

where λ is the dimensionless scale-independent parameter

λ = −c2E〈m〉〈mimj〉−3G−2, (6)

in which the angular brackets indicate the mean mass and the mean mass
product respectively and G is the gravitational constant [22].

One notes that another form of the above equation is

Pij = (mimj)
n/

∑

αβ

(mαmβ)n, (7)

where Pij is the probability that the pair mimj is the surviving binary. This
form has the advantage that one may apply it to more complicated systems.
For 4-body systems in which a common outcome is one binary and two in-
dependent stars, the value n ≈ 2 has been obtained in case of low angular
momentum [24]. Again, smaller values for n may be expected for larger an-
gular momentum.

2.3 Chaos or not?

The three-body motions typically change significantly if the the initial con-
ditions are changed a little. This, however, does not always mean that the
motions are actually chaotic, but that the phase space is very complicated and
is divided into areas of different behavior. The (hyper) surfaces which divide
the phase space are associated with orbits leading to a parabolic disruption
of the system or a triple collision.

Figure 1 illustrates one aspect of the outcome of triple scattering: The
impact parameter was changed in small intervals, the system was integrated
to final disruption and the semi-major axis (over the maximum possible value)
was plotted in the figure. One notes regions of regular behavior (U-shaped
portions of the curve) as well as regions of high sensitivity. However, those
chaotic looking sections are actually filled with very narrow U-shaped curves.
At the points where a/amax = 1 the third star escapes with (asymptotically)
parabolic speed (=0 at infinity). Such an orbit is, however, infinitely sensitive
to initial conditions because, on one side, there is a hyperbolic escape and,
on the other side, a long ejection without escape (yet). One may thus say
that we see here dense systems of singular surfaces of parabolic disruption
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Fig. 1. z = a/amax as function of impact parameter (×104). The value z = 1
corresponds to parabolic disruption.

[25]. However, near the parabolic escape orbit, in the side where there is no
disruption but long ejections, there is a fractal-like structure, as shown by
Boyd and McMillan [4].

3 Long Lasting Stability

As far as is known, all observed stable triple stars are hierarchical systems,
although theoretically other types of stable systems exist. In this section, first
the stability conditions for hierarchical triples are discussed and then some
more “exotic” systems are considered.

3.1 Hierarchical Triples

The stability of hierarchical triple stars is largely determined by the pericenter
distance of the outer orbit. There are many studies of this in the literature
e.g. by Harrington [7], Bailyn [3], Kiseleva and Eggleton [6], Mardling and
Aarseth [21, 1]. Those authors give various estimates for the ratio of the
pericentre distance Rperi of the outer orbit to the semi-major axis ain of the
inner orbit:

(
Rperi

ain

)

Harrington

= 3.5

[
1 + 0.7 ln

(
2

3
+

2

3

m3

m1 + m2

)]
(8)
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(
Rperi

ain

)

Bailyn

=
2.65 + ein

3.5

(
1 +

m3

m1 + m2

) 1

3

(
Rperi

ain

)

Harrington

(9)

(
Rperi

ain

)

Egg−Kise

= (1 + ein)

(
1 +

3.7

Q3

− 2.2

1 + Q3

+
1.4

Q2

Q3 − 1

Q3 + 1

)
(10)

(
Rperi

ain

)

MardlingAarseth

= 2.8

[(
1 +

m3

m1 + m2

)
1 + eout√
1 − eout

] 2

5

. (11)

Here Q2 = [max(m1/m2, m2/m1)]
1

3 , Q3 = (m1+m2

m3

)
1

3 in the Eggleton-
Kiseleva criterion. The masses m1, m2 are the components of the inner binary
and m3 is the outer body and the indices in and out refer to the inner and
outer orbits. The Eggleton-Kiseleva criterion is for circular orbits only (i.e.
both inner and outer are assumed circles initially) while the other expressions
are supposed to be useful more generally. However, as we can see, these
expressions depend in a different way on masses and orbital elements. They
typically give values for (

Rperi

ain
) in the range from 3 to 4, although larger

values occur in extreme cases. By numerical experiments it is not difficult to
find examples in contradiction with the values obtained from these estimates.
Thus none of the published estimates is sufficiently accurate for deeming the
stability of a triple system with certainty. In practice, especially for cases
in the mentioned range, it is better to determine the stability by numerical
integration.

Figure 2 illustrates the motion of a stable triple (but near instability
boundary). In Fig. 3 the variational equation solutions for this triple and for
a close unstable one are plotted. One can see that the instability becomes
quickly evident from the behavior of the variation.

3.2 Kozai resonance

If the mutual inclination in a triple system is high enough, the system un-
dergoes strong periodic variations in the inner eccentricity and the mutual
inclination, known as the Kozai resonance [18, 17]. Especially if the orbits
are perpendicular, the inner eccentricity should reach the value e = 1! This
may thus restrict the existing triples to those having small mutual orbital
inclinations (or near 180 degrees). On the other hand, the Kozai resonance is
sensitively affected by other effects, such as oblateness of the bodies. Other-
wise the existence of the moons of Uranus, or the triple system Algol, would
not be possible.

3.3 Non-hierarchical Triples

Recently Montgomery [20] discovered an interesting special stable triple orbit
in which all the three bodies move along an figure-8 trajectory with one third
phase difference. This orbit is illustrated in Fig. 4. Since the periodic orbit
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Fig. 2. Motion of a hierarchical stable triple in centre-of-mass coordinates. The
big dots describe the positions of the particles at a selected moment.

is stable, one can expect stable motions in the neighborhood of the basic
solution.

Other such cases can be found in the neighborhood of other stable periodic
orbits such as the Broucke orbit [5], the rectilinear Schubart orbit [31, 26], the
co-orbital Lagrangian solutions and the Copenhagen problem. In some cases
some of the masses of the bodies must be small (Lagrangian and Copenhagen
problems). These special orbits, although very interesting for a theoretician,
are less important in astrophysics.

4 Numerical Methods for Triple Stars

Classical numerical methods can be used to compute the motions of triple
stars if close approaches do not occur. Typically, however, regularized meth-
ods are more accurate even when the interactions are not particularly
strong. Today there are several alternative methods available that utilize
the Kustaanheimo-Stiefel (KS) transformation. These include the method of
Aarseth and Zare [2], the global regularization of Heggie [8, 23], and more
recent ones like the logarithmic Hamiltonian method [27, 30]. Details can be
found e.g. in the book by Aarseth [1].
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Fig. 3. Evolution of ln(|dR|) for two hierarchical three-body orbits [Rout = 3.2ain

and Rout = 3.4ain]. Masses=1, a = 5.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1.5 -1 -0.5  0  0.5  1  1.5

Y

X

Fig. 4. The figure-8 (stable, periodic) solution.

4.1 A Regular Symplectic Three-Body Algorithm

Here we consider in more detail only one method which has the advantage
that it is simple enough to allow straightforward differentiation of the algo-
rithm thus making it possible to obtain easily the largest Liapunov exponent
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(i.e. determination of system stability). This method is based on the loga-
rithmic Hamiltonian formalism [27, 30].

Let r1, r2, r3 be the position vectors of the bodies m1, m2, and m3 and
let us introduce the difference vectors

d1 = r3 − r2, d2 = r1 − r3, d3 = r2 − r1. (12)

Then the equations of motion can be written (in units in which the gravita-
tional constant is one)

ẇk = Ak(d) = −M
dk

d3
k

+ mk

3∑

j=1

dj

d3
j

(13)

ḋk = wk, (14)

where thus w’s are the derivatives of the relative vectors dk and M = m1 +
m2 +m3 is the total mass. The kinetic energy (in the centre-of-mass system)
is

T =
1

2M
(m1m2w

2
3 + m1m3w

2
2 + m2m3w

2
1) (15)

and the potential energy

U =
m1m2

d3

+
m1m3

d2

+
m2m3

d3

. (16)

Using the constant total energy E = T −U , which is evaluated only once at
the beginning, one may now write new time-transformed equations of motion
(which now include also an equation for the time t)

w′ = A(d)/U (17)

d′ = w/(T − E) (18)

t′ = 1/(T − E), (19)

where the equality U = T − E is used to make the derivatives of w =
(w1,w2,w3) depend only on the coordinates d = (d1,d2,d3) and the deriva-
tives of d to depend only on w.

Thus the simple leapfrog algorithm is possible. Since in this case the
leapfrog is exact for two-body motion [27, 30], we have an algorithm that is
regular in two-body collisions (algorithmic regularization) even if the differ-
ential equations are singular.

Defining the two ‘subroutines’ X(s) and V(s) (where s is a step size),

X(s) : δt = s/[T (w)− E]; d → d + δt w; t → t + δt (20)

V(s) : δ̃t = s/U(d); w → w + δ̃t A(d), (21)
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one can symbolize one step of the leapfrog algorithm as

X(h/2)V(h)X(h/2)

or, if several steps are taken between outputs,

X(h/2)V(h)X(h)V(h).....X(h)V(h)X(h/2)

i.e. the half-steps are taken only in the beginning and at the end (output).
This algorithm is simple to program, not singular in collision and can be

used also for a soft potential model in which 1/r is replaced by 1/
√

r2 + ε2.
The method is also symplectic and an improvement of accuracy over the
Yoshida’s higher-order leapfrogs [37] or the extrapolation method [29] is pos-
sible.

Due to the structure of the leapfrog, this method exactly conserves the
angular momentum, as well as the geometric integrals

∑
k dk = 0 and∑

k wk = 0. One could also integrate only two of the relative vectors dk

and obtain the third one from the geometric integrals. However, in practice
this hardly saves any computational effort. Instead, one may occasionally
use the geometric integrals to remove any round-off effect by computing the
largest side from the sum of the two others, and applying the same for the
corresponding velocities.

An additional important feature of this algorithm is that it is very easy
to differentiate so as to obtain the tangent map [28] and thus the maximum
Lyapunov exponent. What one does in practice is that the code is first written
and then differentiated line by line. Thus one obtains the exact differentials
of the algorithm, essentially without considering the variational equations.

5 Conclusion

The scattering of single stars off binaries and the disruption of triple systems
are rather well understood, especially in the statistical sense.

However, the stability of hierarchical triple stars still lacks a reliable the-
oretical estimate. Thus, to determine the stability properties of any triple
system model, a check by numerical integration, preferably with a computa-
tion of the largest Lyapunov exponent, is recommended.
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