Science with Optical / Infrared Interferometry

Andreas Quirrenbach Sterrewacht Leiden

The VLT Interferometer

Why Build a Stellar Interferometer?

- To overcome the resolution limitations of conventional telescopes
- To measure the brightest and nearest stars
 - Angular diameters
 - Binary star orbits
 - Limb darkening
 - Stellar surface structure
 - Stellar positions and proper motions
 - Detection of planets
- To constrain theoretical models that describe stellar astrophysics.
- Now also: fainter objects (AGN etc.)

Santiago Jan 28, 2004

Michelson's 20 Foot Interferometer on Mt. Wilson

Observing in the Old Days

Abb. 3. Showing observer at cyepiece of 20 foot interferometer.

The ISI (Infrared Spatial Interferometer, Mt. Wilson)

Schematic Layout of Michelson Interferometer

Santiago Jan 28, 2004

VLTI Delay Lines

The Mark III Interferometer

The Twin Keck Telescopes on Mauna Kea (Hawaii)

The LBT (Large Binocular Telescope, Mt. Graham, AZ)

Stellar Physics

Andreas Quirrenbach Sterrewacht Leiden

Fringe Visibility Defined

Visibility:

$$V = \frac{I_1 - I_2}{I_1 + I_2}$$

 I_1 = bright fringe I_2 = dark fringe

The visibility is a measure of the fringe contrast.

Fringe Contrast ("Visibility") of Uniform Disks

Andreas Quirrenbach

Mass-Radius Relation for Low-Mass Stars

Santiago Jan 28, 2004

15

Visibility Curve of a Binary Star

Information from Binary Stars

- Most important are double-lined spectroscopic binaries (SB2s)
- Spectroscopy gives all system parameters except inclination
- Interferometry can measure inclination ⇒ can derive <u>masses</u> for both components
- Spectroscopy measures orbit in km/s, interferometry in mas ⇒ combination gives <u>distance</u> (dynamical parallax)

Mk III Diameter Measurements of the Giant Star β Pegasi

Santiago Jan 28, 2004

Schematic Model of Extended Stellar Atmosphere

IOTA / FLUOR Data on the Mira Star R Leonis

Santiago Jan 28, 2004

20

Mapping Pulsations with Doppler Tomography and Interferometry

Left: Model

Right: Simulated Reconstruction without and with interferometry

Santiago Jan 28, 2004

Circumstellar Disks, Winds, and Outflows

Andreas Quirrenbach Sterrewacht Leiden

COAST Synthesis Image of the Be Star ζ Tauri

Santiago Jan 28, 2004

Model of a Main-Sequence Disk at 10 µm

Santiago Jan 28, 2004

The η Carinae Nebula (WFPC2, NACO, VLTI)

Santiago Jan 28, 2004

Model of η Carinae

Santiago Jan 28, 2004

Galactic Nuclei

Andreas Quirrenbach Sterrewacht Leiden

The Central Few Arcseconds of Our Galaxy

Santiago Jan 28, 2004

NGC 1068 as Seen in the Radio and by NACO at 5 μ m

Santiago Jan 28, 2004

Model of an AGN Torus

Santiago Jan 28, 2004

Appearance of Torus as a Function of Inclination

MIDI: The First Scientific Instrument of the VLTI

- Built by German / Dutch / French Consortium
- Delivered to Cerro Paranal in 2002
- Commissioning proceeding well
- First exciting scientific results
- Example: NGC 1068
 - Nearby Active Galactic Nucleus
 - Prototype for Central Engine hidden by dust
 - First direct detection of small dust component

Iso-Velocity Contours for Model of 3C273

Santiago Jan 28, 2004

Interferometric Imaging

Andreas Quirrenbach Sterrewacht Leiden

Images from Keck Aperture Masking (Tuthill et al.)

Phase information is needed to recover asymmetric structure.

Santiago Jan 28, 2004

VLTI Imaging Simulation with Four and Eight Telescopes

A Y-Shaped Configuration

Aerial View of the NPOI Array

Santiago Jan 28, 2004

Interferometric High-Resolution Spectroscopy

- Combination of interferometry with highresolution spectroscopy is very powerful
 - Limb darkening profiles in absorption lines → tests of stellar atmospheres, calibration of projection factors in Cepheid measurements
 - Phase shift across absorption lines \rightarrow orbits of very close binaries, direct measurement of stellar rotation
 - Surface structure of chemically peculiar stars
 - Trace shocks in Mira atmospheres
- Need $R \approx 20,000 \dots 100,000$

Santiago Jan 28, 2004

Interferometer Phase across Stellar Absorption Line

Combination of Astrometry with Spectro-Interferometry

Information from Orientation of Rotation Axis

- Alignment of components in wide binary systems
 - Mechanism of binary star formation
 - Angular momentum distribution in multiple systems
- Orientation of planetary orbit with respect to stellar rotation axis
 - Correlate with planetary masses, orbital eccentricities
 - Probe eccentricity pumping mechanisms