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Abstract. The popular NASA Astrophysics Data System includes bib-
liographic records indexed with terms from a variety of semi-compatible
descriptor languages. These include coordinate index terms taken from
the NASA Thesaurus and Astrophysical Journal subject headings, among
others. We have worked to develop a system that takes as input the NASA
terms assigned by professional indexers, and translates them into ApJ
headings. Our system maps sets of descriptors, rather than individual
descriptors, since two or more coordinate index terms may translate to
a single pre-coordinated subject heading. We began our study with lex-
ical resemblance as the main source of evidence and later developed a
connected system that exploits patterns of consistent co-assignment in a
subset of the ADS collection that is indexed using both ApJ headings and
NASA terms. Our most recent efforts have been aimed at improving the
network’s performance via supervised learning. In this paper we present
the results of our most recent formal evaluation studies and an examin-
ation of some specific documents drawn from a set we’ve mapped using
the network.

1. The Heterogeneous Indexing Problem

In an ongoing project at the University of Illinois, we have investigated methods
to support the automatic and/or computer-assisted reconciliation of heterogen-
eous indexing in the NASA Astrophysics Data System (ADS). ADS provides
astronomers worldwide with access to over a million abstracts and full text art-
icles in the fields of astronomy and astrophysics, instrumentation, physics and
geophysics (Eichhorn et al. 1998). A mixture of controlled indexing vocabularies
has limited ADS searchers’ ability to conduct precise subject searches, and our
investigations have focused on two sources of evidence for resolving the incon-
sistencies: lexical resemblance between descriptors and consistent assignment of
descriptors from different vocabularies to the same documents (Dubin 1998; Lee
1998; Lee, Dubin, & Kurtz 1999).

1.1. Vocabulary Reconciliation

Indexing a document is a highly demanding task, and it is hard to elicit ex-
plicitly the set of formal rules for indexing. Accordingly, it is not feasible to
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make an automatic indexing system which is rule-based. Vocabulary merging
is also difficult and requires the full understanding of the indexing schemes of
all participating indexing vocabularies and complex relationships among terms
employed. Hence, it is very difficult to extract the explicit rules for vocabulary
merging. A symbolic or rule-based approach is very limiting for this type of
problem. Alternatively, a connected approach can be applied to the problem
of indexing and vocabulary merging since it tries to find input/output pattern
relationships without the need to find the rules for indexing and term mapping.

In an earlier paper, we have described a spreading activation model, similar
to those employed for modeling human associative memory (Lee 1998). In the
model the network is described as a feed-forward three-layer network which
is constructed out of evidence of document co-assignment pattern. A subset of
documents, each indexed by two different indexing vocabularies, is selected from
the database and then used as the evidence for merging different vocabularies.
By identifying term descriptors from both vocabularies for each document, it is
possible to relate terms from one vocabulary (source) to terms from the other
(target). A node in the input layer corresponds to each term descriptor in the
source vocabulary from which we want to find the mapping term(s) in the target
vocabulary. A node in the middle layer corresponds to each document in the
collection. A node in the output layer corresponds to each term descriptor in
the target vocabulary.

The link between a term and a document has the connection strength
between 0 and 1 if the document is indexed by the term. Initially, the weight
assigned to the link is determined by the number of nodes connected from a
sending node. The link gets the weight of 1

Ni
, where Ni is the number of links

from the node in one layer to the nodes in the subsequent layer. The assumption
underlying this weighting scheme is that the activation of a sending node will be
spread out across all the connected nodes. Specifically, when a term descriptor is
employed to index many documents in the collection, the link weights between
the input term node and the document nodes become small. This weighting
scheme for the input and middle layers corresponds to the measure of Inverse
Document Frequency (IDF). However, the link between a document node and an
output term node will not be affected by the number of documents indexed by
the terms from the output layer, but by the number of term descriptors applied
for each document: so-called Inverse Term Frequency (ITF). Depending on the
direction of spreading activation, link weights are determined by two different
measures, IDF for input-to-middle links and ITF for middle-to-output links.

The network produces a set of activated output nodes as a result of spread-
ing activation process. The activation of the nodes in the input term layer is
spread through the network to the connected document nodes and from there
to the output term nodes. The output of the network is a ranked list of out-
put terms with their activation levels indicating the degree of relatedness to the
input term(s).

We have used the network for context-dependent mapping of descriptor sets
rather than basing a static term-to-term mapping on fixed associations. That is
to say, all the terms assigned together to a particular document are mapped as a
group. A document is assumed to be represented not by separate terms but by a
set of terms which comprises a specific context. We have found that the network
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performs better for the mapping from specific to general term descriptors (STI
→ ApJ) than the mapping from general to specific (ApJ → STI). In addition,
the STI → ApJ network showed more robustness against the removal of any
single document node under testing than the ApJ → STI network (Lee & Dubin
1999).

2. Back-Propagation Learning for Vocabulary Merging

In the case of vocabulary mapping problem, supervised learning techniques can
be used to find term relationships between indexing vocabularies if the training
data of input-output patterns exist. Since we are testing the set of documents
co-indexed by two different indexing systems, target output is known a priori
for each input as a correct answer. The training exemplars consist of the set
of co-indexed documents. For each document, source index terms are identified
as an input pattern and target index terms as an output pattern. What is
to be learned by the network are the input-output pattern mappings, that are
source-target subject index term relationships.

Supervised learning occurs in two steps, via the back-propagation model
(Rumelhart, Hinton, & Williams 1986). First, a set of terms is given to the
corresponding nodes in the input term layer. The activations of the input term
nodes propagate forward to the middle layer, thereby activating all the linked
document nodes. Then the activation spreads to the output term layer along the
connections. A set of term nodes activated in the output layer is identified: the
product of feed-forward activation in the network is the list of activated nodes
with their activation level.

The activation received by a document node is calculated by summing up
the activation coming from all the connected input term nodes. The errors in
the output layer are computed, and propagated backwards from there to the
middle to the input layer. The actual output of a node is compared to the
desired output of that node. The discrepancy between what is computed from
the network and what is desired is the error measure for each node. The error
(δk) for an output term node uk is determined by the difference between the
actual output (ak) from the network and the correct output (tk) for the given
input ui.

δk = (tk − ak)ak(1 − ak)

For each document under testing, a set of subject descriptors is identified
for both source and target indexing vocabularies. The input to the network is
the set of subject descriptors from the source vocabulary for the given document,
and the desired output is the set of subject descriptors (target terms) from the
target vocabulary for the same document. The connection weight between the
output term node uk and a linked document node uj is then updated to reduce
this error. The errors are propagated backwards from the nodes in the output
term layer to those in the document layer. The input-to-middle link weight is
updated in the same way. The weight change is proportional to the estimated
error in a document node and the activation of its incoming input term node.
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3. Experiment

We have integrated the learning algorithm into the spreading activation network
model to test whether the term relationships among heterogeneous indexing
vocabularies can be learned based on the co-occurrence data of subject indexing.
The network is trained on a training data set and tested against the new test
data set. The learning performance is measured by precision and recall of the
network prediction from STI terms to ApJ terms.

3.1. Data Set

The data set includes two different subject indexing vocabularies employed in
ADS: Astrophysical Journal subject headings (ApJ) and index terms applied by
NASA’s Scientific and Technical Information group (STI). These two vocabu-
laries differ in many respects. ApJ headings are assigned to the documents by
authors while STI terms are by professional indexers. ApJ headings include
pre-coordinated descriptors while STI terms come from the NASA Thesaurus.
Another distinction between these two lies in their scope and degree of spe-
cificity in indexing: the NASA Thesaurus has many levels of broader and nar-
rower terms, and professional indexers are trained to apply more specific terms
wherever possible.

The test collection is composed of two sets of documents. one set has 39,366
documents, and indexed by ApJ headings. Another set has 22,139 documents,
and indexed by STI terms. Out of these two sets of documents, the set of 14,956
documents was found to be co-indexed by both indexing vocabularies. Basic
statistics of this test collection are presented in Table 1.

3.2. Network Representation

A three-layer feed-forward network is constructed out of a set of 14,956 docu-
ments with two different indexing systems applied. The input layer corresponds
to the source vocabulary of STI (NASA thesaurus terms), the output layer to
the target vocabulary of ApJ (subject keyword list for Astrophysical Journal),
and the middle (or hidden) layer to the document set. Each term in the vocabu-
lary is represented as a node in the input or output layer, and each document is
represented as a node in the middle layer. As a result, the network will consist
of 4,120 nodes in the input layer, 2,305 nodes in the output layer, and 14,956
nodes in the middle layer if the whole data set is used. The actual network
constructed in this study includes 13,460 document nodes out of the training
data set. The set of nodes in the input and output layer is determined by the
randomly selected document nodes.

STI ApJ

Number of documents 14,956 14,956
Number of descriptors 4,120 2,305
Average number of postings 34 23
Average number of descriptors per doc. 9.6 3.5

Table 1. Statistics of the test collection
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3.3. Procedure

The back-propagation network is implemented in four steps in the study. First,
the indexing data are randomly divided into the training and test data sets.
The training set is composed of 90% of the data and the test set includes the
remaining 10%. Secondly, the training data set is used to construct the nodes
in each layer in the network. Then, the weight matrices are initialized before
training. Finally, the network is trained repeatedly with the training data set
until it satisfies the stopping rule. For training, documents from the training
data set are ordered randomly and used as training examples.

3.4. Formal Evaluation

During the training process, the network is evaluated against the test data
set after each epoch of training. For term selection, we applied the so-called
“Mexican-Hat” function which has been successfully used for detecting edges in
vision processing (Charniak & McDermott 1987). The output of the spread-
ing activation in the network is a large number of activated terms, some with
very low activation levels. A cutoff point is determined by the distribution of
term activation levels for each input. The ranked array of activation levels is
convolved with the “Mexican Hat” curve, and the cutoff point is found where
the slope of the activation value distribution reaches its steepest decline. Only
terms above this cutoff point are selected as mapping terms for a given input
and used as network output for evaluation.

We evaluate both the ranking and the sensitivity of the cutoff with conven-
tional recall and precision measures. A perfect mapping is defined as one that
exactly predicts assignments by human indexers. Our current efforts focus on
improving the network’s performance as measured by both precision and recall.
The precision ratio is defined by the percentage of those above the cutoff that
are correct while the recall ratio by the percentage of correct that are above the
cutoff. A learning curve is obtained for both precision and recall measures in a
series of training. Each iteration consists of 13,460 training documents, and the
learned network is evaluated against 1,496 testing documents. The presentation
order of documents changes with each iteration.

4. Quantitative Results

Before the training, the mapping performance of the network without learn-
ing is measured as 50% of average precision and 35% of average recall. After
one iteration of training, the mapping performance increases to 58% and 40% re-
spectively. Three iterations of training make the learning of the network stabilize
at around 60% average precision and 42% average recall. These results indicate
that supervised learning can improve the performance of term mappings. The
network is constructed from and trained by the training data set which is based
on the document co-assignment pattern. Each learning exemplar consists of two
indexing indices: a document, STI terms, and ApJ terms. The performance of
term mapping from STI to ApJ is largely dependent on the evidence of term
relationships each learning exemplar brings to bear. The improvement in the
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mapping performance implies the network can learn term relationships out of
document co-assignment pattern.

5. Qualitative Evaluation

Recall and precision studies give some sense of the network’s success in pre-
dicting author and editor-assigned subject headings. But the measures tell us
very little about what kinds of terms the network is likely to guess correctly or
how its failures are likely to affect subject access in ADS if the model were put
to practical use. We have therefore reviewed the results of mapping selected
documents that are not part of our co-indexed collection. Although the target
subject headings for these documents aren’t part of the ADS bibliographic re-
cord, they do appear in the paper and scanned versions of the articles. With
a few extra manual steps we can test the network’s success in predicting those
terms.

Each of the examples below contrasts the terms assigned to a document by
a NASA indexer with the subject headings appearing in the journal and those
assigned by the network. Thus the first column represents input to the network,
the second our standard of success, and the third column is the output from the
system. Some effort has been made to put corresponding or similar terms on
the same line, but that is merely illustrative: actual output from the network is
ranked based on activation level.

NASA ApJ Network
galactic clusters galaxies: clustering galaxies: clustering
quasars quasars quasars
charge coupled devices
color-magnitude diagram
emission spectra
red shift

This first example illustrates our definition of perfect success: starting with
the six NASA terms, the network successfully predicts precisely the two terms
that appear on the journal article. It is only such exact matches that contribute
to increasing the recall and precision measures.

NASA ApJ Network
accretion disks accretion, accretion disks
pre-main sequence stars stars: pre-main-sequence stars: pre-main-sequence
stellar mass ejection stars: mass loss stars: mass loss
stellar winds
absorption spectra
carbon monoxide
computational astrophysics
line spectra

This second example is far more representative of the results we’ve seen.
Precision is high: both terms predicted by the network are correct. None of the
terms assigned by the NASA indexer have evoked a term that didn’t appear on
the article. But the missing heading could easily have been mapped on the basis
of lexical resemblance.
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NASA ApJ Network
active galactic nuclei galaxies: active

galaxies: nuclei galaxies: nuclei
black holes (astronomy) black hole physics
quasars quasars: general quasars
interacting galaxies galaxies: interactions galaxies: interactions
cosmology cosmology
radio jets (astronomy) radio continuum: galaxies galaxies: jets
radio astronomy
luminosity

The third example demonstrates that headings deemed incorrect in our re-
call and precision studies may be lexically or semantically very close to a correct
heading. In this example, we would count “galaxies: nuclei” as a match, but
“quasars” as a miss, since the actual heading assigned was “quasars: general.”

NASA ApJ Network
accretion disks accretion, accretion disks
magnetohydrodynamic stability MHD hydromagnetics

instabilities
x ray binaries x-rays: bursts x-rays: binaries
pulsar magnetospheres
astronomical models
computational astrophysics
stellar evolution

Finally, the last example shows how what we’ve deemed an incorrect as-
signment can be understood from the input to the network. The system failed
to assign either “x-rays: bursts” or “MHD” to this document. But one can
easily recognize which input terms have yielded “hydromagnetics” and “x-rays:
binaries.”

6. Discussion

Predicting the exact headings assigned by authors and editors is not a realistic
standard for success, considering the very different criteria that professional
indexers bring to the task of subject analysis. The NASA STI indexers not only
assigned more descriptors than authors and editors, but they also chose more
specific terms. But, unrealistic though the standard may be, it means that our
recall and precision measures are fairly conservative.

Our goal is not only to map index terms to another descriptor language:
we wish to do so in a way that is as consistent as possible with the way the
same headings are applied manually to other documents in the database. This
is where the current strategy scores over static term-to-term mapping, either via
the network model or using lexical resemblance evidence. A straight term-to-
term mapping would produce far more subject headings than is typically applied
to an article.

Nevertheless, we are not satisfied with the low levels of recall, and the fact
that unmapped terms often bear a strong lexical resemblance to STI terms in
the input. Due to the way our system is designed, strong evidence for one or
two headings will trigger the threshold and close the door on other potential
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matches. Clearly we need a more liberal matching standard, even at the cost
of some precision. Our next step will be to look for ways to either adjust the
cutoff threshold or integrate other sources of evidence (e.g., lexical similarity).

There are also several issues of interest related to the learning of term
relationships. First, learning occurs incrementally by updating the connection
weights in order to adapt to the learning environment. The learning curve
showing the rate of learning can provide useful information about the learning
process. The comparison of human learning and machine learning may give some
insights to the validity of cognitive/computational models of human information
processing.

Second, the learning should be robust enough to generalize to the new data
set which was not given to the network as learning exemplars. The success of
a learning system is greatly dependent on this generalization of learning. If the
network is well trained for the training instances, the knowledge is assumed to be
represented in a distributed way across the network. In that case, the mappings
of input to output are largely determined by patterns across the entire network
and thus less prone to error. The network should be more robust if the mapping
is drawing on evidence over many nodes, not just a few.

Third, the learning performance is very data-dependent, greatly influenced
by the representativeness of the training instances. What is learned by the
system are the regularities emerging from patterns in the data. Therefore, it is
very critical to the success of the system to provide a representative data set
which reveals the systematic input-to-output relationships.
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