Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

Designing and managing software interfaces for the ELT

Gianluca Chiozzi', Luigi Andolfato, Mario Kiekebusch, Nick Kornweibel,
Marcus Schilling, Michele Zamparelli
European Southern Observatory, Garching bei Miinchen, Germany

ABSTRACT

The Extremely Large Telescope[l] (ELT) is a 39 meters optical telescope under construction at an altitude of about
3000m in the Chilean Atacama desert. The optical design is based on a novel five-mirror scheme and incorporates
adaptive optics mirrors. The primary mirror consists of 798 segments, each 1.4 meters wide.

The architecture of the control system[2] is split in layers and in a high number of subsystems/components developed by
different parties. This implies a high number of interfaces that must be designed and maintained under configuration
control, to ensure a flawless integration of the different parts.

Having interfaces (and data) definitions in a flexible central place allows us to extract several different artifacts (for
example Interface Control Documents (ICDs), Interface Definition Language (IDL) files, tabular spreadsheets, help files,
other generated code formats like code stubs or state machine implementations).

In this paper, we explain how selecting a graphical modeling language like SysML and using graphical and tabular
editing features made available by state of the art modeling tools presents a number of advantages with respect to other
solutions like spreadsheets, a relational database, or a custom textual DSL. Still, using standard export/import formats
(EMF XMI), we do not bind ourselves to a specific vendor.

We describe the workflow that we have identified for the definition of interfaces, what artifacts we want to automatically
produce and why. We also describe what technologies we are using to reach these objectives.

A key aspect of this work is the selection of interface design patterns that are formal enough to allow automatic
generation of the artifacts and, at the same time, pragmatic and simple to gain acceptance from all users and not incur in
overhead.

Keywords: ELT, modeling, interface definition

1. INTRODUCTION

ESO has been relying since several years on model driven engineering methodologies and tools for the development of
the control systems of telescopes and instruments. Rational, concrete usage and lessons learned have been presented in
several papers, like [3],[4] and [6]. The Active Phasing Experiment project (APE) was also used by the OMG Telescope
Modeling Challenge Team as a base for writing a cookbook for Model Based System Engineering (MBSE) with
SysML[5].

For the ELT we are developing models using these methodologies in the areas where we can get concrete advantages and
when we can use them to produce and maintain documentation and other artifacts. This is particularly true for control
software design and development.

Selecting a SysML model and a tool like MagicDraw” as the master format presents several advantages with respect to
other formats, like spreadsheets, relational database or custom textual languages, including:

e FEasy visually-assisted handling of interface hierarchies and modularity.

! gchiozzi@eso.org; phone +49-89-32006543
2 https://www.nomagic.com/products/magicdraw

10707 - 78 V. 3 (p.1 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

e Reuse across various types of model and checking of consistency. For example, defining queries to identify who
is using any of the specified interfaces and if the usage is consistent.

Native implementation by the tool of several typical system engineering concepts.

Possibility of keeping together interfaces and their behavioral descriptions.

Flexibility of reusing the information for further design/verification activities.

Possibility of implementing validation rules using the tool’s validation engine in order to promote model
consistency.

e Collaborative work with partial locking of edited interfaces.

Using standard export/import formats (EMF XMI), we do not bind ourselves to a specific tool or to a specific vendor.
Model transformations to generate artefacts from EMF XMI exported files do not depend on the tool used to graphically
develop the model and can rely on open tools, frameworks and transformation languages, like the EMF and the Xtend
tool set[7].

The choice does not preclude to change the master database to a different format at a later time. Operational needs might
later require, for instance, to maintain interface information in an ELT Central Configuration Database, rather than in a
descriptive SysML model. Reversing the direction of generation and import/export achieves this goal.

One area where we consider modeling particularly useful is in the definition of interfaces, since we need to keep the
definitions aligned in the Interface Control Documents and all through requirements analysis, design and
implementation. In the ELT we have to keep under configuration control the interfaces between the Local Control
Systems that are contracted to industry, and the Central Control System and the interfaces with the instruments.
Interfaces evolution is a natural part of the design and implementation life cycles, with new features and details being
added or edited. Model assisted interface definition greatly enhances the task of maintaining such definitions in a
consistent state, across iterative modifications. Also, the daily usage of API interfaces can be greatly enhanced if both
their documentation and derived code stubs can be obtained from the same, consistent source.

We have therefore defined a workflow and elements (terms, and their attributes) in a dedicated ELT SysML profile to
support the development of interfaces, described in the following sections.

2. STANDARD ICD STRUCTURE

In the case of ICDs for Local Control Systems, the basic assumption is that J
we shall follow the structure already used in the ICD documents prepared for
the contractors of the ELT subsystems, and exemplified in Figure 1 and

Dome Azimuth Rotator IF

Figure 5:
. . . . Control
e Every ICD can be hierarchically structured in functional groups
For example, the interface for Dome control can be split in : Commands

o Dome Azimuth Rotation
o Wind Screen
o Slit Doors —

e Each ICD or functional group have a Control and a Safety part.

e Interface specifications for Control or Safety parts can include: Safety

o Commands
o Monitoring (measurements and status)
o Configuration

e For each interface it shall be possible to specify
o Documentation : Monitoring
o Types of parameters and monitor/configuration data items
o Standard quality of service (QO0S) parameters such as

: Commands

: Configuration

= Rate
= Synchronization
= Latency Figure 1. Basic standard interface

structure

10707 - 78 V. 3 (p.2 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

o Eventually other semantic information

This structure is not binding (in particular for usages different from LCS ICDs) and can be easily adapted to the specific
needs of different projects. For example, instead of identifying Control and Safety interfaces at sub-component level, a
project can decide to do the other way around and have a Control and Safety interface directly below the subsystem and
have a functional structure inside the Control or Safety level. Nothing changes at the level of what is described here, but
for the order in which the packages are nested. Consistency inside the project and the usage context naturally remains an
important goal for the ELT project.

3. ICS SYSML PROFILE AND TEMPLATES

We follow the MBSE and OOSEM conventions[5], as they have been adapted for the ELT, in terms of package structure
and usage of UML and SysML elements and modeling specifications. All conventions were formalized in the mentioned
SysML profile.

Figure 2 is a screenshot of the package structure for the Subsystem metamodel in the ELT profile.

B- @ EELT_TCS_Profile [EELT_TCS_Profile #81]
B- 4/ Relations

-] Metamodels

~ [ELTControlSystemMetamodel-ToBeRefactored
B[] LCS2LSV-ICDMetamodel

B}/ Relations

B[ASubsystemlLCS
B[] ASubsystemLCS _Interfaces | Summary tables
ions

Allinterfaces-SummaryTable

-+ CommandInterfaces-SummaryTable

o ConfigurationInterfaces-SummaryTable

st MonitorInterfaces-SummaryTable

] TNEIMETTaCEsTucre

B2 AsubsystemLCS_if «In
E}- B8 AsubComponent _i

- control_If ceBloch

inout posLimitHigh : rad = 0.0 «elt.if.conf

it posLimitLow : rad = 0.0
out opened : Boolean = fals

A out position : rad = 0.0 «elt.if.monito!

Control and Safety interface decomposition

18 out safety : EELT_TC
nout aSubComponment : EEL
B} (=] Subystem «Block

Figure 2. Subsystem model structure

The metamodel contains templates intended to be copied & pasted as a complete sub-tree in the place where the
developer wants to use them and doing search & replace operations to customize them. They are therefore as much as
possible self-contained and relative to the root package.

Together with the model-based definition of the interfaces, the template contains a set of standardized tables, whose
content is generated by querying the model, and that are automatically updated when the model changes. These tables are
meant to be directly used in the ICD printable documents and are also very handy for editing the details of the interface
elements (otherwise often a drawback of graphical modeling), as shown in Figure 3.

4. DEFINING INTERFACES IN MODELS

The hierarchical containment tree (on the left in Figure 3) is the best place to create/remove interfaces.

10707 - 78 V. 3 (p.3 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

Summary tables (on the right in Figure 3) are the best place to edit the details of single interfaces.

In the following description (using UML/SysML notation), as well as in the template, ASubsystem is a generic name
to be replaced by the name of the actual subsystem being modeled, for example M4.

ASubsystemLCS_Interfaces is the package grouping together the interfaces of the whole LCS. The package, in
its basic form, contains an «interfaceBlock» element modeling the whole interface according to the structure
defined in section 2 or any other logically defined structure.

g Containment Bz Structure | £0 Diagrams | 78 Lock view | B BT Project | | 5 intestac. 2 ... Read-Oniy] Readonly) = - X | «rm
Convarment rex B | D addhew (3 AddExstng... © Ockeie [Remove From Table | @5 = & Sowcokmns I BEcot R (& L QRQ00% iR i ia QD
[=3 4] & -l citera

Bt P 3 Bement Type: | Interface Block, eltif.monitor e] Scope (optional): | ASubsystemi.CS_Interfaces (e At
e vee
o = | Name [Tvpeotintertace | 0 mpmipe [O comatensy [- owme | omw | Oscumentaten
| Element m Lty
For examle, this would be the wid screen of the telescc
* ASubComponent_f -> Windscreen_f
“Type
i B <> it product [Class, Packa;
| O ERERT ICS Profie (ERLT_TCS Profie #81] V. [contains two parts:
pZ e / » Contral
B [ELTConkolSysterMetamodel-ToBeRefactored / 2 8 B AsubComponent_if undefined> B <undefined> cundefined> o Safety
£ £ LCS2SV-ICOMetamodel
Vd According to SysML and DOSEM comentions, Interfaces
-2 Retowns / e odavd 18
| B0 Asibsrstenics /
i [5-[) ASubsystemiCS_interfaces o :
I B2 Relators / <<proxy>> pons
Altnterfoces SurmmaryTable:
= £ typed as the camesponding <<interfaceBlock>>
g Coemendinterfoces-SunmaryTabie Therefore our ASubComponent_if has two <<proxy>> pol
Ll Configurationinterfaces-SummaryTable o Control and one for Safety Unless already
i rseciniestuces-Summar/TabE Sy ool existing somewhare else. we also define inside this biock
Editable fields <<InterfaceBlocks>> that will contain
the detailed defintion of the specifc interfaces
Ths <<InterfaceBlock>> descrbes 3 spechic Control nterfa
For example & would be the Control interface to aperate ju
— Screen of the dome.
. ~—al| In this specific example, k& contains
2 out posttion : rad = 0.0 T « monkor points modeled as out Flow Properties wih
© cpnl) =t Fan 3 2 B control_if cundefined > W <undefined> <undefined> <<ekL.monkons» stereotype appled
© dose() <t ond « confiqunation ponts modeled as nout Aow Propert
E-E3 safety_f <Intefoces <<ek.F.config>> stersotype appled &
[autbralmestatin s Bockean = fake asl . moriirs sFiowPropert « commands modeled 35 0p&/R00NS With <<ek.f.omd
. © brakesEngege() stereotype appled.
) ot control : ¢
10 cut satety 1 Bodiean Amoritor pont, a5 an example of 8 Boolean.
o e + L5 spened 0.028] o 0.0
-1 Subystem <6
rad A moritor point, a6 an exampl of an angle expreseed i radans (2
£} [Telescope
7 Defmactods 5 3 positon 0.025 7 vue 20
A MaprgStereotypestiocks
Lt T <cPiacubcs ducbw e S T 5 |
JR\ES T (oofle fovtec Local Control Swstem.
T A b N > lo . Inths specific example & contains just one moNKor peint m
L S Wbty ¥ e W cundefined> | curdefied> out Fow Property with < <elt.f.montor> > stereotype appl
% Zoom " [Documentation command modeled a5 an operation wih <<ek.F.cmd>> 3¢
aopied.
ey 22 51 Bodlean A morstor pont, 8¢ n exanple of 8 Booiean.
7 LB brakesstatus 0.025) vue 0.0
HL

Navigate and add/remove
elements

Figure 3. Interface navigation and editing with tables.

According to SysML and OOSEM conventions, interfaces are modeled as «proxy» ports typed as the corresponding
«interfaceBlockx». Therefore, in our LCS standard, each sub-component interface ASubComponent 1if has two
«proxy» ports, one for Control and one for Safety. Unless reusing interfaces already defined somewhere else, we also
define inside this block two «interfaceBlock» elements that will contain the detailed definition of the specific
interfaces.

Interfaces are modeled by:

e creating an «interfaceBlock» model element, typically
e insidean Interface package
e orinside another «interfaceBlock»

Interfaces are declared by:

adding a «proxy» port element to the block exposing that interface and assigning as type to the port the
corresponding «interfaceBlock».

An «interfaceBlock» can be structured in sub-interfaces to model finer granularity.

Typically, the «interfaceBlock» defining the internal sub-interface is created inside the super-interface (unless
reusing something already existing).

An «interfaceBlock» can contain the description for interfaces as:

10707 - 78 V. 3 (p.4 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

e Commands.
A Command is defined by:
o Adding to the «interfaceBlock» an operation with the name of the command.
o Applying the «elt.if.command» stereotype.
o Defining parameters and return values.
o Setting the tags for the stereotype, from the specification panel of from the interface table.
e Monitor points (measurements and status).
A Monitor point is defined by:
o Adding to the «interfaceBlock» a Flow Property with the name of the monitor point.
Setting its Direction to out (we can only access the value to read it, we cannot set it).
Applying the «elt.if.monitor» stereotype.
Setting the logical type of the Flow Property to a valid Type (typically the units, for example rad or m).
Setting the tags for the stereotype, from the specification panel of from the interface table, for example
setting, if necessary and typically just at detailed design level, the implType to the type used for the
implementation (like int, int64, float, double).
e Configuration.
A Configuration point, i.e. an element that is part of the configuration description for a subsystem and that, for
example, will be set in its own configuration database, is defined by:
o Adding to the «interfaceBlock» a Flow Property with the name of the configuration point.
o Setting its Direction to inout (we can both access and change a configuration value).
o Setting the logical type of the Property Value to a valid Type (typically the units, for example rad or
m).
o Setting the tags for the stereotype, as for Monitor points.

O O O O

Notice that, once the corresponding operations and value properties (see the description of the interface elements) have
been placed inside the «interfaceBlock»(s), it is possible and very convenient to edit the values directly in the
tables. Tables provide a compact view of the details of operations and properties of the interfaces.

Figure 4 shows an excerpt from the stereotypes typically used to model the interfaces, and their documentation, as drawn

%

MName | Documentation |

This stereotype shall be applied to all elementary ELT command interface elements (to be represented as “operations™).
It adds a number of tags used to qualify the characteristics of the command interfaces.
It is @ spedialization of DirectedFeature and therefore featurelirection shall be used to specify if the command is provided, reguired
interfaceElements shall be owned by SysML InterfaceBlocks.
This sterectype shall be applied to all elementary ELT configuration interface elements (to be represented as "inout
Flowr Properties”, i.e. Flow Properties with inout direction, since we can both read and change the value).
It adds a number of tags used to qualify the characteristics of the configuration interfaces.
The multiplicity of the Flow Port can be used to specify how many properties are specified (for example for arrays); a
2 «» glt.if.config multiplicity of [0..1] make the Property optional.
The tag implType (if set) is used to specify ad design level the specific implermentation type. For example an angle can
have has type rad (radians, the physical units specified at an abstract level) and has implType z float or 2 double or
some other implementation specific representation. Notice that also the implType shall be a valid Type object.
interfaceElements shall be owned by SysML InterfaceBlocks.
This stereotype is applied to relations between Use Cases, to mark the execution of a Use Case as a pre-condition for the execution of
3 «# glt.hasAsPrecondition another one.

1 «» glkif.cmd

Figure 4. Example of terms (Stereotypes) defined in the ELT Profile
from the ELT SysML Profile.

The interfaces can also be represented effectively using a SysML Block Definition Diagram (BDD), as shown in Figure
5, that gives an intuitive representation of the hierarchical structure of the interfaces.

10707 - 78 V. 3 (p.5 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

bdd [Package] ASubsystemLCS_Interfaces [[& ThelnterfaceStructure U

[Modfication date |[101517 2:48 AM
[Last modified by || gehiczzi

wblocks

Subystem
: ASubsystemLCS
if|: ASubsystemLCS_if
winterfaceBlocks
winterfaceBlocks ASubComponent_if
aSubC ASubl t if ASubsystemLCS_if
T ®Proxy»
aSubComponment
«proxys

control : Control_If CproXys
Ezl control,

winterfaceBlocks
Control_If

flow properties
inout posLimitHigh : rad = 0.0
inout posLimitLow : rad = 0.0
— —=| out opened : Boolean = false

out position : rad = 0.0

operatio
«elt.if. cmdzopen()
aelt if cmd»close()

«Proxy»
safety]: Safety_if AProxys
[« safety

winterfaceBlocks
Safety_if

Tlow o
out brakesStatus : Bo false

ope
welt.if. cmdsbrakesEn

Figure 5. Interface structure in a block definition diagram

5. USING INTERFACES IN MODELS

There are different options to model the usage of an interface by a client.
The simplest way, that we are suggesting here, is to:

1. adda «proxy» port element to the block representing the client

2. assign as type to the port the «interfaceBlock» representing the used interface

3. "conjugate" the port (think about the male/female interfaces) to model the fact that you are a user of the
interface and therefore output becomes input and the other way around. Conjugation is displayed with the ~
symbol (see e.g. Figure 6).

4. draw a connector between the port of the server and the one of the client (Figure 7).

Most modeling tools will perform some validation when you draw the connector and will markup the connection in red
color if the ports are not compatible.

10707 - 78 V. 3 (p.6 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

[t— [In the case of ICDs for Local Control Systems, the.., «paragraph= |[§ Hi. 88 - —
E-[7 LCS to LSV metamodel fexample description «section»
$~-D Modeling rules for interfaces step by step «sections
B
Cnacificatinn of Pry Part
Specification of Proxy Port properties
Specify properties of the selected Proxy Port in the properties specification table. Choose the Expert or All
ioptions from the Properties drop-down list to see more properties.
B[«ics.LocalSupervisors
& : ASubsystemLSV
E® D @ pl
e =l P fes: |]
T B e i |mm| B ef o Properties: Al -]
Usage inDisgrams | =y B % % i L — S
Multiplicity (Unspecified)
-
[cHm Is Service true / }:
Is Behavior [] false ___,—’—f—’jf—? W
! s Conjugated (V] true ﬂ
&0 Active Hyperlink
Redefinition Context = AsubsystemLsv [EELT_TCS_Profile::Metamo
Redefined Element
Is Leaf] false
| Wame Expression — 4
= Name
-0OE The name of the NamedElement.
~E1F
M
T Pl |ﬂ] b Q Type here to filter properties
Ho I
ear (o]

} EELT_CS_PartsCatalog «se2.partscataloguer [EELT_CS_Parts_Catalog #52]
§ ELT Documentation Management [ELT Documentation Management B Constraint Para....
O Port

| ESO MBDG Authors Library «ModelLibrary> [ESO MBDG Authors Library 224]
Figure 6. Adding to a client a port with conjugate interface

et H B Clssifer Gehav.

T B
R A O RE N U TR Y

m B - H I [Blockd [T =0 | [Modfication aate || 1075017 8.45 AN

LW R BeA S e vgiﬂd Pboe

[Last moastied by |[geniozzi |

- A—

LT TR

Clgommon

[=h Note: -

[T Comment

%5 Rationale “ctes LocalSupervisors) : [atcs LS =1

{7 Blemant Group +ASubsystemLSV " if: f“:_lf‘i A o
¥ aproxys

F Contanment aSutCompanment : ASubComponent_it

7 Abstraction “proys

" Dependency _,__,_.d————'—""_'_'d_'_‘
SPrOXy®

5 Mlocate i ~Control aproys

2] image Shape ¥ Safety if

) Diagram Overview

[=] Diagram Legend
4 TextBox

[¥) Value Progerty [
2 Rowpert

< B]

Figure 7. Connect client and server interfaces

10707 - 78 V. 3 (p.7 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

6. ICD EXAMPLES

As a concrete example, Figure 8 shows the BDD for the interface of the of the M4 LCS. The interface is split in 3
functional groups (Adaptive Mirror, Cooling System and Power Supply), each with a control and a safety interface.

bdd [Package] M4LCS_Interfaces ['E_* The\nler{aceslrudureu

[Modfication ate |[1014117 1056 AN

[Last modiied by | gehiczzi |

adaptiveNirror : AdaptiveMirror_if winterfaceBlocks [ainterfaceBlocks = ainterfaceBlocks =
«CORBAInterfaces _NDTU_XV” «CORBAInterfaces «CORBAInterfaces
MALCS_if adaptivelirror AdaptiveMirror_if proxys Control_if
control flow properties
—

control : Control_if inout posLimitUpper - rad = 0.0
inout posLimitLower : rad = 0.0
out brickstatus : BrickStatus = false
out position : rad = 0.0
outloopClosed : Boolean = false
out mirrorParked : Boolean = false

safety : Safety_if out mirrorPowered © Boolean = false

«eltifcmdscloseLoop()

«eltif. cmdsenableintegralAction(y{sync, qos...
«gltif cmdsparkMirrer(}qosLatency = "0.07}
zeltif.cmd=setpoini()

coelingSystem : CoolingSystem_j Proxy»
safety sinterfaceBlocks =
o «CORBAInterfaces
control : Control_If Safety_if
«proxys
coolingSystem winterfaceBlocks = ainterfaceBlocky =
«CORBAInterfaces «CORBAInterfaces
safety : Safety_if CoolingSystem_if Control_If
flow Ties
= ””:V”‘ out setpoint - K = false{qoslLatency = "0.025
powerSupply : PowerSupply i 2_1, oul temperature ; K= 273.0{gosLatency = "0...
seltif. cmdson(}sync, qosLatency ="1.0",ra
«roxy» | eitif emdsoff(}sync, qoslatency ="1.0" ra
control ; Contrel_If pafety
winterfaceBlocks =
«CORBAInterfaces
Safety_if
safety : Safety_if flow properties
out averTemperature - Boolean = falsefqos
«proxys
powerSupply zinterfaceBlocks = ainterfaceBlocks =
«CORBAInterfaces «CORBAInterfaces
PowerSupply_if Control_If

low
oulvoltage : V = falsel
out current : A = 0.0{qosL ater

proxys»
control

zeltif emdson(){sync, gosLatency ="1.0" ra
zeltif cmdzofi({sync, gosLatency ="1.0" ra.
pru:{yn winterfaceBlocks =
Lsarety «CORBAIterfaces
Safety_if

fiow prog

out overTemperature : Boolean = false{gos..

Figure 8. M4 LCS Interface

Figure 9 shows instead the standard interface defined in the Instrumentation Framework for shutter devices.

The ELT Instrumentation Framework defines standard interfaces for the devices commonly used in instruments, like
Lamps, Motors, Shutters, Piezo.

The interfaces defined for these devices are at detailed design level and take into account specific implementation details,
like the fact that communication from the PLCs to the applications using them goes through OPCUA.

The controller for each device has two interfaces:
e an Opcua interface, toward the users, implemented through OPCUA, and

e a Mapping interface directly communicating with the connected hardware through digital, analog or other types
of I/O ports on the PLC.

For the Opcua interfaces it has been decided to separate explicitly control, configuration and monitoring (here called
status) in three separate «interfaceBlock» definitions.

10707 - 78 V. 3 (p.8 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

bdd [Fackage] SPIE2018-10707-78-Designing_and_managing_software_interfaces_for_the_ELT][@ ShutlerlnterfaceStrudure—simpliﬂedU nterfaceDinck
« b o]

uaDevControl_if

winterfaceBlocks
interfaceBlocks uaShutterControl_if

Opcua_if uaShutterControl_if RPC_Close()
RPC_Open()

winterfaceBlocks =
Shutter_if

uaShutterConfig_if winterfaceBlocks
uaShutterConfig_if

flow properties
inout bActivityLowClosed : Boolean = false
inout bActivityLowFault : Boolean = false
uaShutterControl_if : uaShutterControl_if inout bActivityLowOpen : Boolean = false
inout bActivityLowSwitch : Boolean = false
inout blgnoreFault : Boolean = false

iopcua_if

inout blgnoreOpen : Boolean = falze
inout binttialState : Boolean = false
inout nTimeout : Integer = 3000

opcua_if : Opcua_if

winterfaceBlocks
uaDevsStatus_if

f

uaShutterStatus_if : uaShutterStatus_if uashutterStatus_if sinterfaceBlocks =
uaShutterStatus_if

uaShutterConfig_if : uaShutterConfig_if

winterfaceBlocks
Mapping if winterfaceBlocks
p mapQut_if mapOut_if

flow properties
out switch : Boolean

mapping_if

winterfaceBlocks

mapln_if mapln_if
flow properties

in close : Boolean [1]

in fault : Boolean [0..1]

in open : Boolean [1]

in nCouplerState : Integer

Figure 9. Instrumentation Framework Shutter standard interface

7. MODEL TRANSFORMATIONS

At the moment, the primary usage of the interfaces defined in the model is for analysis and design inside the models
themselves and for producing documentation. A documentation engine executed from inside MagicDraw based on a
document generation UML profile is responsible for generating documents in DocBOOK and PDF format[8], but also
the tool’s native reporting engine for PDF can be used to generate customary ICD documentation,

We aim at developing model transformations to generate from XMI exports of the models:

o Stubs and skeletons for the interfaces in the form of IDL files for the CII infrastructure, in the supported
languages.

o Google Protocol Buffer definitions.
o Schema for the configuration database and configuration files.

In parallel to interfaces, we will be using the structural model of the system to generate skeletons of the complete
applications and we are generating already control state machines as described in [3] and [4].

10707 - 78 V. 3 (p.9 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http:/SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact author_help@spie.org with any questions or concerns.

8. CONCLUSION

Until now we have defined the standard structure, modeling profile and workflow for the definition of interfaces.

We are also generating documentation and we have started prototyping the generation of other artefacts, following the
path adopted with our previous projects. This work will proceed in parallel to the consolidation of the design of CCS
supervisory applications, of the Instrumentation Frameworks and of CII, that will define the targets of the model
transformations.

The process of managing interfaces as being used now still involves manual steps, but most of them can be simplified or
made completely automatized by customizing the elements of the profile or by writing MagicDraw macros. It will have
to be evaluated up to which level automation pays off in pragmatic terms.

We want to be sure that the effort spent in writing each model transformations or modeling support tool will be
abundantly compensated by the saved effort on the side of the users and in maintaining and keeping aligned the
information/documentation and the actual implementation along the lifetime of the project.

ACKNOWLEDGMENTS

We would like to thank here many colleagues who have provided requirements and feedback for the definition of the
ELT control system architecture and in particular R.Karban who played a major role in laying down the foundations of
the concept already several years ago before moving to JPL.

REFERENCES

[1] Tamai, R., et al., "The E-ELT program status", These proc. SPIE 10700, paper 10700-36 (2018)

[2] Chiozzi, G. et al., “The ELT Control System”, These proc. SPIE 10707, paper 10707-31 (2018)

[3] Andolfato, L. et al., “Behavioural Models for Device Control”, Proc. ICALEPCS 2017, Barcelona, Spain (2017)

[4] Chiozzi, G. et al., “A UML Profile for Code Generation of Component Based Distributed Systems”, Proc.
ICALEPCS 2011, Grenoble, France (2011)

[5] Karban, R. et al., Cookbook for MBSE with SysML, MBSE Initiative - SE2 Challenge Team (2011)

[6] Andolfato, L. et al., “Experiences in Applying Model Driven Engineering to the Telescope and Instrument
Control System Domain”, Lecture Notes in Computer Science Volume 8767, 2014, pp 403-419 - Springer
International Publishing Switzerland

[7] Klatt B., “Xpand: A Closer Look at the model2text Transformation Language” 12" European Conference on
Software Maintenance and Reengineering, (2008).

[8] Karban, R., Zamparelli, M., Bauvir, B., Chiozzi, G., “Three years of MBSE for a large scientific programme:
Report from the Trenches of Telescope Modeling”, INCOSE 2012 (Rome, 09-12 July 2012)

10707 - 78 V. 3 (p.10 of 10) / Color: No / Format: A4 / Date: 5/29/2018 10:09:11 AM

SPIE USE: DB Check, Prod Check, Notes:

