
Modernized build and test infrastructure for control software at ESO: 

highly flexible building, testing, and automatic quality practices for 

telescope control software 
F. Pellegrin, B. Jeram, J. Haucke, S. Feyrin 

European Southern Observatory 

Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen, Germany 

 

ABSTRACT 

The paper describes the introduction of a new automatized build and test infrastructure, based on the open-source software 

Jenkins1, into the ESO Very Large Telescope control software to replace the preexisting in-house solution. A brief 

introduction to software quality practices is given, a description of the previous solution, the limitations of it and new 

upcoming requirements. Modifications required to adapt the new system are described, how these were implemented to 

current software and the results obtained. An overview on how the new system may be used in future projects is also 

presented. 

Keywords: automatic build and test, software quality, control software ESO, Jenkins 

 

1. INTRODUCTION 

Maximizing the observation time is definitely one of the most important quality goals at the ESO observing facilities. High 

uptime and fault-less operation of the software services related to the control of the telescopes is therefore an immediate 

consequence, leading to many activities pointed to assure quality in the development of software in the Control Software 

and Engineering department at ESO. 

Introducing quality metrics and procedures from the early phases of software development is very important, as many 

studies analyze the exponential growth of the cost of fixing a bug in relation to the phase of lifecycle of the project2. Not 

just obvious malfunctions are important to catch, but also trends that may in the long time impair operations, such as 

computational resource usage, or maintenance, such as badly formatted code. At the same time, it is obvious that executing 

regularly manual quality controls can be a very expensive and tedious work. This work can be even more complicated 

when the team working on the project can be from different software cultures, as is the case of ESO where local developers, 

external contractors and Consortia teams are often tightly collaborating on the same project. Therefore, automatic quality 

checking procedures executed as early as possible into the software lifecycle are undoubtedly an important asset in modern 

software development. 

Various operations can be, with a reasonable effort, automated in the software development process. First and most obvious 

is to maintain the code in a revision control system to keep code and track modifications over time. Checking if the 

modified code is still compiling is usually the natural next step. There are also many activities that can be done on the 

source code. These activities are usually classified under the umbrella of static checking, as the code is not really running. 

Part of this class of operations are for example coding conventions checking, such as a consistent code indentation scheme, 

analysis of source code for classic known problematic programming patterns, such as out of bounds array usage, and 

analysis of source code for complexity parameters, such as number of nested branches in a function. 

Executing some tests on the compiled code is then on the line. In this case, a variety of tests families are executed: unit 

tests, to check the code on the modular level, regression tests, to check if the behavior changed from the previous run, 

integration tests, to check if the code works when put with other components, stress tests, if the code works in particular 

problematic conditions, and many others. Ideally, the tests should exercise as much as possible the code and we measure 

this with a metric usually named code coverage. While this dynamic inspection of code is done, resources can be monitored 

for possible leakage or excessive usage trends. 



 

 
 

 

The timing of execution is also a very important decision. Ideally, an immediate execution, the so-called continuous 

integration, is the best road as an immediate feedback is given after a modification. But often the time to execute the 

operation needed, either a long build or a very comprehensive set of tests that require special hardware, can limit this 

possibility. 

 

2. HISTORY ABOUT AUTOMATION IN CONTROL SOFTWARE AT ESO 

The software team at ESO recognized the necessity for automating and regularly executing build, test and quality assurance 

tasks back in 2006. At that time, there were not many ready possibilities, either in the commercial or open-source world 

that could fit the necessities and peculiarities of the ESO software. Therefore, an in-house solution was studied and the 

NRI, Nightly Reporting Infrastructure, was born. 

The NRI goal, as the name tells, was to execute all the quality related activities during the night and report anomalies to 

the developers at the beginning of the working day. The project was mainly written in Perl3 and running on the 

GNU4/Linux5 operating system distribution. It was using textual configuration files to determine and configure the 

activities to be executed and presented the output via a Web interface, while also sending error notifications immediately 

via email to actively notify the developers. One of the problems NRI had to tackle was the necessity to execute builds and 

tests on various platforms, as the Local Control Units (LCUs) present in the telescopes had for various reasons, like 

computational necessities and obsolescence, different architectures or architecture variants. 

 

Figure 1: NRI Web Interface 

After NRI introduction, many projects at ESO moved to this platform: the VLT Control Software, part of the SPARTA 

AO facilities, Dataflow systems and ALMA subsystems. Specific project needs and problems were then addressed by 

modifying the code and with time more and more new features were added, like C code static checking and test coverage 

statistics. 



 

 
 

 

3. DEVELOPMENT ENVIRONMENT VLT CONTROL SOFTWARE 

The automatic test and build infrastructure is just a part of the whole development environment for the VLT Control 

Software. The project uses as source code management software, or SCM, the software package Subversion6, or SVN in 

short. The workstation software is running nowadays totally on GNU/Linux operating systems, where also most of the 

development is being done. Real-time components run on VXWorks7 operating system by Wind River, running on various 

generation hardware executed with remote network execution techniques. Most of the source code is written in C/C++ and 

TCL/TK. The C/C++ code is compiled using the GNU C Compiler Collection8, using either standard Linux compiler 

distributions or specific derived compilers supplied by Wind River for the VXWorks local control unit code. The core 

build system is the GNU Make9 system, with an in-house developed tool named pkgin used to simplify and batch many 

operations. The ticketing system used by the project is Atlassian JIRA10. 

 

4. MODERNIZATION OF THE BUILD AND TEST INFRASTRUCTURE 

After almost 10 years of successful service of NRI a few considerations were made on the software used, given also the 

new experience acquired and new trends with development environments and development tools. Three main concerns 

were raised with the current solution: 

 Cost of adaptation to new tools was quite high, as new support required always work and coding from the NRI 

team. Especially with the number of new potentially interesting tools available in the community, it was hard to 

invest effort on their integration.  

 Maintenance cost, as 10 years of continuous enrichment and adaptations for specific projects needs required a 

good amount of investment.  

 Scalability: projects often requested the possibility to scale the execution to more parallelizable instances and the 

support of different operating systems platforms. 

In an effort to modernize the automatic build and test infrastructure, a new solution was being searched for. The new 

solution had to be more easily portable to various platforms, offer easy parallelization of tasks, have a modular structure 

to introduce new tools as easily as possible and offer possibly a good support either, preferably, open-source or commercial. 

After a careful research, an open-source product was identified as the best candidate: Jenkins. 

Jenkins 

Jenkins1, formerly known as Hudson, is one of the leading open-source automation servers. The software, written in Java, 

provides the possibility to automatize building, testing and any other task in the development and quality assurance process. 

It is based on a master-slave architecture where the master server is the one containing and managing the configuration 

and results of the defined activities, while the slaves are machines that execute some specific phase of the process, such a 

build or a code analysis. It is multiplatform as it can run on many platforms with the only requirements being mostly the 

availability of a fairly recent Java Runtime Environment, JRE, and the means to connect via network, such as a secure 

shell service enabled. It is highly expandable with the so-called plugins, pieces of code that expand both the frontend and 

the backend potentialities of the software. The plugins, which at the moment of writing count in the numbers of around 

1100, bring support for all kind of standard development tools, source code management systems, network infrastructure 

and build customization. Specifically most of the source code management systems are supported, such as SVN, GIT11, 

Bazaar12 and Mercurial13. Should some special feature not be present Jenkins nor in any available plugin be needed, a 

creation of a new plugin could be done in Java. In recent versions of Jenkins a degree of extensibility can be also achieved 

using the native built-in support for Groovy scripting. 

Jenkins focuses also on ease of use, providing a user-friendly Web interface that can be easily used by all the actors 

involved in software development process, from managers, to developers, to testers, to system administrators. Additional 

machines where to run operations can be easily added, as far as the basic JRE and network accessibility requirements are 

satisfied, as the client side software, a Java JAR archive, is automatically installed and run by the Jenkins master. 

Additional machines where to run operations can be either physical, virtual or cloud based machines, always connected to 

the Jenkins infrastructure or connected just when the master strictly needs them, opening also the possibility to use certain 

machines just partially for the Jenkins infrastructure. The system therefore offers easy scalability and possibility to 

parallelize tasks in the build chain. 



 

 
 

 

Jenkins also offers a fine-grained authorization management, giving the possibility to clearly define roles and permissions 

on various levels. For example, some developer can access in read-only some project, while others can also request a build 

trigger, some can download the generated artefacts while others cannot even see a certain project and so on. Authentication 

can be made with either local users definition or using standard authentication services, such as NIS or Active Directory. 

 

 

Figure 2: Graphical representation of the automatic build and test system 

In general, an executed activity in Jenkins is named job. Each job is roughly defined by the method where to retrieve the 

source from, a SCM system, and the operations to perform for the execution, usually some shell script code. Additionally 

what to do afterwards can be defined, usually elaborate and publish the results on the Web page, send some email 

notifications, trigger the execution of another job or store some files, for example the generated binaries, for later retrieval 

by either another job or by a human actor. Of course, also timing constraints can be defined, defining both condition when 

the job has to run, either on each commit or on scheduled times, and when it should not, not to disturb some other activity. 

In the same way, dependencies or exclusions between jobs can be easily defined to create a chain of execution as desired.  

 

5. CUSTOMIZATION OF JENKINS TO VLT CONTROL SOFTWARE NEEDS 

A very important aspect to be kept in mind when changing the build and test automation system was to limit the impact 

on procedures and habits of the developers. Being the VLT control software project now over 15 years old and the NRI 

system about 10, it would be hard to ask developers to radically change their behavior. This is even more important if we 

consider that the developers are not just internal ESO staff but also external consultants and a big number of engineers and 

scientists from Consortia. Big changes in the workflow should therefore be avoided, both from low level build and test 

procedures and from high-level user interfaces and notification methods. 

At the same time, a few new features should be added to improve the previous system: 

 The most important of all was to try to shorten overall execution time, ideally by executing more tests in parallel, 

specifically for pieces of code that are compiled for more than one architecture, and present a single easily 

readable overview of the cumulative results. This was not possible with NRI, where a single architecture was 

built and tested per night and therefore multiple architectures could be only tested on different days of the week. 



 

 
 

 

This should also be the first step toward having also a shorter total build and test of the basic VLT control 

software, which was currently running in about 21 hours, starting at the evening and giving the full results soon 

after noon of the following day. 

 Introduce both in the report table and in the email notifications, additional important information such as the 

number of warnings encountered during compilation or time needed to build or execute a test 

 Introduce test code coverage reports and additional static analysis activities 

 Add the possibility to easily request execution, when special needs arise, also out of the common predefined 

schedules, to immediately have a feedback on some changes 

 

Build level adaptations 

The first step to integrate easily the VLT control software into Jenkins was to move from the current build system, 

comprising of an in-house made compilation procedure named pkgin that invokes the GNU Make program at a module 

level, to a system purely based on GNU Make configuration files for the building and testing phases.  

 At a module level GNU Make was already used. Therefore, just the addition of a higher-level infrastructure of 

recursive Makefiles through the package structure was added, which calls at the end of the chain the pre-existing 

module ones. The impact on the module level for the developers would therefore be zero. 

 The calls were encapsulated inside GNU Make macros, giving the possibility to easily act in the future on a single 

point, should changes be required.  

 These macros simply chain the calls downwards to the module, by prior knowledge of standard directory structure, 

and create some very simple text files containing the results of the execution that is then used by the Jenkins 

infrastructure. These files contain information on the outcome of the build or test, separated if needed also by 

architecture, with timings and detailed error information. 

 All the macros have standard names for each module, for example the build or test or clean, making the way of 

execution standard on both module and package level. 

Recently important change that was done: fix in the base Makefile a few details, mostly dealing with correct dependencies 

generation and installation of files in parallel that permitted the execution of the build process using the GNU Make parallel 

execution support, the job server feature. The parallelization up to now works at a module level, meaning two modules 

cannot be compiled at the same time but more source files in a single module can. Going further by parallelizing the 

compilation of modules as well would be for sure possible but would require an explicit definition of module dependencies 

at a higher level. This is for sure on the list of things to do in the future. 

On the opposite side, the possibility for local modules Makefiles to communicate with the higher-level ones, for example 

to specify what kind of architecture they support, was introduced with some classic GNU Make variables. By examining 

such variables, the top level Makefile knows exactly which operations the module requires. In detail, the variables were 

introduced to specify the architectures supported, currently Motorola 68000, PowerPC 604 and INTEL Nehalem, the 

support for multithreaded compilation, using pthreads, and the deprecation of parallel build on the current module, should 

the module compilation for some reason not be parallelizable. 

It is also important to say, that to additionally support and help developers, a small tool in Python was prepared to convert 

the old-style pkgin build execution into a Makefile template that can be used as a starting point with the standard GNU 

Make building. In some cases, where it is not possible to manage the Makefile in the repository, this tool is used even 

directly in the Jenkins activity to create on-the-fly the build configuration file. 

 

Execution and results adaptations 

The other important aspect with which users, especially the project manager, interacted a lot with the NRI system was the 

results user interface. The project manager could daily see the results and browse the detail of the operations, understanding 

at a glance for example which tests failed and then with a few clicks understand in detail what failed. The results were at 

a module level, but grouped by package for convenience. 



 

 
 

 

In an ideal Jenkins setup, each module would be managed by a single job, an activity that can be run autonomously by 

Jenkins. Because modules in VLT control software do not have a full dependency information between themselves and 

due to the request to keep the output report table on the package level, it was decided to keep the job activities on a package 

level. This leads to the creation of a total of four main jobs in the build stage, representing the four main packages: the 

VLT core package, the telescope Interface, the detectors core package and the instrument core. Of course, this kind of 

division diminishes the final possible parallelization, but simplifies also the management over the one at module level that 

would imply the creation of around 150 jobs, of course possibly in an automatic way, each representing a module. 

A consequence of the grouping of more modules in a single job meant also that an alternative way of displaying the result 

should be needed, as the concept is something not standard in Jenkins. To achieve this, after the invocation of the new 

GNU Make build script a Python script is invoked, which examines the results files generated by GNU Make, previously 

mentioned, and generates a highly customized, but template based, HTML table containing all the information needed in 

the desired format. This generated HTML table is then easily published using a Jenkins plugin. The nice thing about using 

HTML to convey the information is the possibility to introduce also elements such as a graphical representation, a pie 

chart, of the amount of builds or tests failed and the possibility to directly link relevant information, such as the low-level 

log of the build or test execution, from the stored artifacts to the table. The table is presented with appropriate colors and 

classic HTML table helpers such as column sorting and tooltips bringing additional information, such as for example the 

log of the last SVN commit in each specific module, that would result too heavy if directly inserted as a table column. The 

HTML is prepared using templates, which is filled with just the specifically generated data, giving therefore the possibility 

to easily change the look and feel in the future and reusing the work in other projects. The possibility to apply, as partially 

done, also dynamic Javascript code to the page makes the possible extensions of the reports potentially huge. 

 

 

Figure 3: Jenkins results table example 

Jenkins contains very flexible email notification capabilities, extensible also with additional plugins, to send customized 

email to predefined recipients or to recipients derived from the SCM changes. However, as it does not recognize the higher 

granularity of job splitting into modules, we implemented the email notification in the same Python script that generates 

the HTML output to be published on the web. The information about the recipient for each module, called in ESO VLT 

control software the sinner, was added as a SVN property not to create some text file or database containing this which is 



 

 
 

 

hard to maintain. The Python script can therefore just request the SVN property maintainer for each module that needs 

reporting and use it to deliver the message. As an optimization, if one email address has more than one message to be 

delivered, that is a single maintainer has more than one module build or test failing, this will be united in a single email 

message. The email message content is highly customizable and in principle contains as the subject a clear indication on 

the package and operation that failed and as body the link to the specific job execution in the Jenkins HTML report and 

more details on the specific modules failure. Other helper functions, such as disabling notification per architecture, have 

been also implemented. 

 

6. JENKINS INFRASTRUCTURE FOR THE VLT CONTROL SOFTWARE 

At the end of the transition phase and after about 18 months of constant usage, a quite complete configuration is in place 

for the VLT control software. Currently the configuration is applied to the two software versions in development phase: 

the currently supported, which is receiving regular patch revisions, and the forthcoming major release. For both releases, 

a complete set of the VLT control software main packages is built, all the integrated tests executed and also documentation 

is generated, which can be also immediately accessed online via the Jenkins job page. This is executed at the end of the 

working day, slightly shifted per release not to create additional network transfer peaks, and is always completed early 

enough before the first developers arrive for the next working day. For both releases, the software is built and tested for 

the PowerPC 604 and Motorola 68040 supported architectures, with the newly supported INTEL architecture in addition 

for VLT release 2016. The results of all the different architectures are merged in an easy to read table. To reduce overall 

execution time and achieve the desired results, a complete run during the night, for each version we have a number of 

Jenkins slaves equal to one more than the supported architectures. In this way, we can run at once one test for each 

architecture and a test that does not require special LCU hardware attached. This calculation brings us, for example in the 

current situation, to a total of 3 machines for VLT patch release 2014 and 4 machines for VLT major release 2016, mostly 

very busy during the night execution. On each machine, one single test can run at once and in parallel with a build, therefore 

giving the possibility to execute also the same number of builds in parallel. Builds and tests are executed with different 

system users to isolate even more the possibility of conflicts between the two. For ease of management, the machines are 

all virtual machines running while the architecture specific LCU hardware is divided per type and per version into separate 

groups, named pools. The special hardware is monitored by specific scripts run at the beginning of the test phase, which 

can also perform a reset via hardware using remote power switches that can be controlled via SNMP packets.  

Even if it is not an integral part of the VLT control software delivery, also an additional package which purpose is to 

heavily stimulate and stress test the central control software infrastructure, is built and tested in the process for both active 

versions. 

Recently due to modifications needed to the build system scripts, a continuous integration system has been put into action: 

on every commit, with a fixed delay of 3 minutes that could be also eliminated, a build is done for the four main packages 

as in the normal nightly run. The compilation is done just on the package that received some modification and to the 

dependent packages, guaranteeing in this way a feedback that ranges from about 5 to 20 minutes. If the basic VLT Core 

software was modified then also an immediate test, based on the stress test module previously mentioned, will be executed 

to guarantee not just the correct compilation but also that at least a basic functionality is still intact. The tests indeed 

stimulates both workstation and LCU code and executes most of the general operations needed by the system, like 

environment setup, external hardware booting, system configuration, database usage and so on. 

A few additional features came almost at no cost with the adaptation of the new system, for example the automatic 

generation of changelogs between executions and the possibility to link the Jenkins system with the ticketing system used 

for VLT control software - Jira. After configuring the specific plugin to point to the ticketing server and defining the pattern 

of the tickets, the tickets can be immediately accessed with one click from the changelog. The other way around, it is 

possible for Jenkins to automatically post the build result, containing a reference to a specific ticket, inside the comments 

of the ticket itself. 

 



 

 
 

 

 

Figure 4: Jenkins home page with VLT2016 jobs overview 

 

Quality assurance activities 

Additional QA activities are executed on a slower pace basis as an execution on shorter intervals would probably bring 

little advantages. These activities use standard tools that have a dedicated plugin in the Jenkins system to ease the analysis 

and the display of the data on the Web interface. 

On a biweekly basis, or more often on request during campaigns pointed to improvement of code quality, C and C++ static 

code analysis is performed using open-source product cppcheck14, which output can be very neatly integrated into Jenkins 

via a plugin. The execution of this process is quite resource hungry, especially since care is taken to include all the specific 

header files to reduce possibly at a minimum the false positives. Therefore we dedicated a special 8 core virtual machine 

to this task, which is shared also with other activities that need temporary but very high computational power. The desired 

type of output, for example errors, warning, style incongruences, performance optimizations or portability issues, can be 

filtered at execution and then sorted in various ways on the user interface. From the user interface, it is very easy to 

immediately jump to the incriminated line of code, to understand better the context and the error, where also a summary 

explanation is given by the static code checker. Of course some false positives, correct code reported as an error, can 

sometimes occur. For those, the developer has the possibility to explicitly ignore a specific error by inserting a special 

comment tag in the source code. 

Every Sunday during daytime, when no developers are present, all the C/C++ code for the workstation side, LCU side is 

currently into implementation phase, is rebuilt with coverage instrumentation, using the GCOV15 libraries, and all the tests 

are run. This activity will give the possibility to the developer, and of course also the tester and project manager, to 

appreciate which amount of code is actually being touched by the test. What is even more interesting is that this activity 

will also clearly point out which lines were executed, and how many times, and of course, which were not. This gives the 

possibility to further try to improve the tests by studying the code lines that are obviously not stimulated by already existing 

tests. All the statistics and analysis can be applied by module, subdirectory or file, giving also a view on different levels 

on where more work is needed. All the statistics are collected in time so the overall improvements can be monitored in 

time. 



 

 
 

 

 

Figure 5: Code Coverage Output Example 

Another important tool that was newly integrated into the automatized system is the memory leakage checking. This is 

done using the standard valgrind16 tools suite and an integration plugin for Jenkins to manage its output. The execution of 

this activity is not automatic and planned, but is executed on request. Execution using the valgrind tools, on one side brings 

very important and useful information about possible resource leakage, on the other side poses a few problems in the 

context of the VLT control software. The execution, in fact, being done in a de-facto virtual machine is much slower, about 

5 to 10 times, than the original one. Apart from making the overall test execution longer, which may not be a problem if 

properly planned, this brings also potential test failures when tests rely on specific timings. On the other side, VLT control 

software module tests are usually not pure unit tests, but higher-level tests, and require the setup of a working environment. 

This leads to the fact that the analysis of a test often comprises many components and therefore the output can become 

hard to read. Still the tool is available and has been used in cases when resource leakage was suspected and the tool brought 

up interesting information to the developer. 

Recently, with VLT2016, also automatized configuration management of the test and development machines has been 

introduced. Using Puppet17 as the configuration management tool and Jenkins as a frontend, a daily check of all the 

machines used by the Jenkins infrastructure and by the developers is done. The parameters checked are various and 

constantly growing to cover all the necessities, well separating in a modular structure the different necessities of different 

machines. If one single parameter for a machine is not aligned an email will be immediately sent to the machine 

administrators that can then decide how to proceed, either align the machine or recognize that the parameter need changed 

and act accordingly to the rules database, stored in SVN. 

Other activities are also available to be run on demand: very useful examples are the execution of the tests with a special 

debug kernel that keeps accounting of resources usage on the LCU side or execution of tests that require special hardware 

that need to be also monitored by an operator. In this second case the level of automation is of course lower, but the very 

important aspect of running it into the Jenkins infrastructure is to easily keep track of all the executions, successes and 

failures in the long time and be able to correlate them with changes that happened in between. 

Results and comparison of the renewed system 

The whole execution of a night run with the NRI system lasted roughly 21 hours. Starting at 5 p.m. this would briefly give 

the last results, of the last package in line, by 2 p.m. of the next day, almost at the time to start with the new execution. 

With the parallelization introduced by Jenkins the total execution time dropped down to just over 8 hours. Starting still at 

5 p.m. the full results run would be available at around 1 a.m., so even the start can be delayed to permit late modifications 

to developers and still remain largely on time for the early morning ones. 



 

 
 

 

 

Figure 6: Timeline showing parallel execution of multiple build and test processes 

What is very important to notice is that in the much shorter timespan not just one architecture is built and tested, as it was 

the case of NRI, but all the supported ones are. With the old system, different architectures could be tested just on different 

days, giving also the trouble of correlating slightly different source code given the time shift. Additionally in the timing 

also a few other activities are already counted here, as not in the past, such as documentation generation and some 

additional support packages. 

Another very important thing to say is that the timing could be still much optimized if tests jobs were further divided and 

therefore executed in parallel. Of course, this would require a larger number of machines available and LCU pools, 

therefore a higher cost in hardware, but it would not really bring many advantages to the project since, as far as the test is 

shorter than the night stop, no extra time would be gained. The extra time remaining until the morning will be therefore 

instead used to run additional builds and jobs, such as build and test of the VLT operations software, the test instrument 

and other real instruments. 

From the continuous integration point of view, after the modification to the build system to allow at least intra-module 

parallel building, the execution of the build on the four main modules has been reduced from approximately 1h40 minutes 

to approximately 25 minutes, roughly 25% of the time. These results are achieved using a 16-core machine and instructing 

GNU Make to execute up to a maximum of 16 parallel jobs. A higher number of cores available do not really change the 

results, as there are very few modules that contain more than 16 source files, for which additional parallelization would 

therefore bring an advantage. Optimizations on the memory, storage and network speeds could bring some additional 

improvements. 

 

7. JENKINS INFRASTRUCTURE FOR THE SPARTA SYSTEM 

Also the SPARTA project, the adaptive optics infrastructure, was inserted into the NRI execution loop. The SPARTA 

project is actually built over the VLT control software and therefore modifications done to the base VLT control software 

for the build automation can be almost automatically used within the SPARTA software infrastructure. Naturally, with the 

usage of Jenkins for the VLT control software also the SPARTA project migrated to the infrastructure.  

It is important to keep in mind that the SPARTA project is used by a big number of different instruments and therefore a 

change in the basic platform can have theoretically different effects on them. In relation to this, in the Jenkins system a 

full chain has been setup so changes in the underlying levels are then propagated and tested on various instruments, at the 

moment of writing CIAO, GALACSI, GRAAL, NAOMI and SPHERE. For all the instruments a full build and a basic 

deployment and startup test is done. Then, specifically by instrument, many tests are executed focusing of course mostly 

on the parts that do not require special hardware, not available, to be executed. Compared to VLT control software the 

tests in the SPARTA case are of a higher level, trying to stimulate the system and the complex interaction in it as a whole, 

not at a modular level. 



 

 
 

 

 

Figure 7: Dependencies and execution flow in the SPARTA system 

An interesting aspect of the Jenkins infrastructure for SPARTA is the plan to execute also tests on the cluster with real 

hardware in specific days of the week when the cluster is available. To achieve this a helper application that manages the 

on-the-fly switching of the software versions on the cluster virtual machines has been implemented. This, coupled with a 

numerical test, should be the next natural step to be able to perform heavy-weight tests on a hardware configuration which 

is much similar to the one in operation. 

Additionally, other quality assurance as for the VLT control software are executed: weekly coverage calculation in the 

weekend and monthly static code analysis of the source trees. 

8. JENKINS INFRASTRUCTURE FOR THE E-ELT 

The new ESO programme E-ELT will bring to the control software team very important challenges also on the testing 

automation and integration. At the moment, the idea to use the Jenkins infrastructure also for this project after the positive 

results with VLT for internal integration and testing is valid. Compared to VLT, the E-ELT project, from the software 

integration and testing point of view, brings many new challenges. First of all a new platform to support, in VLT everything 

is either Linux or VXWorks currently, while in E-ELT we will have the addition of the Microsoft Windows platform, and 

languages such as Java, Python, NI LabView18 and PLC languages, all in the E-ELT standard. A bigger contribution from 

non-ESO resources is also expected and this means the necessity to be versatile to integrate different tools and procedures. 

Many tests have been done in the prototyping of the Jenkins integration system on the various aspects. First and foremost, 

Jenkins has been successfully tested with slave machines running Windows 7 platform. Here some prototype jobs have 

been executed: PLC code compilation based on Visual Studio interface, LabView code analysis executed via LabView 

interface itself, prototypes of UI automation testing using the AutoIT19 infrastructure and prototypes of system integration 

of interfaces using on the Robot Framework20. All this jobs, with required work to automate and control the execution 

under Windows environment, were successfully integrated into Jenkins and are run on a regular basis on in-house 

prototypes. 

On the language support side, in addition to the C/C++ tools that are already integrated in Jenkins for the VLT control 

software, also Java tools were prototyped. Additionally to the build and test execution also code style checking was 

prototyped using the Checkstyle21 open source tool, and its companion Jenkins plugin, and bug hunting was setup using 

the FindBugs22 open source tool, again with an ready to use Jenkins extension plugin. Both tools, like the cppcheck for 

VLT, support easy to use graphical display of results found, with historical graphs and direct source code browsing. 

Another interesting technological feature that has been tested is the usage of Docker23 containers for test reproducibility. 

The Docker container technology give the possibility to recreate easily a well-known environment, from a filesystem but 

also networking point of view, in which tests can be executed. This methodology simplifies the management of the machine 

where the tests are executed, as by re-instantiating on each execution the container the state is very well known. All this is 

very well integrated in Jenkins as, again with a plugin, containers are dynamically instantiated and created when a job 

marked to be run on them is in the execution queue. There is interest to integrate this new way of reproducing test 

environments also inside the VLT control software testing environment. 

 



 

 
 

 

9. CONCLUSIONS 

The migration from the old in-house solution to the new Jenkins based solution has been for sure a very successful project. 

The two main goals, the possibility to scale and do it with little effort, were fully met and many other important secondary 

goals were reached. Now we can count on having an easily adaptable tool to new requests. No particular problems were 

encountered during the switch and, actually, the timing from experimentation to complete switching was quite short. 

Additionally, the tool quickly acquired confidence and sympathy from the software team with requests to add other 

projects, instruments and activities. This was also possible as from the very beginning a very generic and configurable 

philosophy was the base of the system.  

 

10. REFERENCES 

[1] https://www.jenkins.io 

[2] J. Stecklein, “Error cost escalation through the project life cycle”, 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf, NASA, Tech. Rep., 2004. 

[3] https://www.perl.org/ 

[4] https://www.gnu.org 

[5] http://www.linuxfoundation.org/ 

[6] https://subversion.apache.org/ 

[7] http://windriver.com/products/vxworks/ 

[8] https://gcc.gnu.org/ 

[9] https://www.gnu.org/software/make/ 

[10] https://www.atlassian.com/software/jira 

[11] https://git-scm.com/ 

[12] http://bazaar.canonical.com/en/ 

[13] https://www.mercurial-scm.org/ 

[14] http://cppcheck.sourceforge.net/ 

[15] https://gcc.gnu.org/onlinedocs/gcc/Gcov.html 

[16] http://valgrind.org/ 

[17] https://puppet.com/ 

[18] http://www.ni.com/labview/ 

[19] https://www.autoitscript.com/site/autoit/ 

[20] http://robotframework.org/ 

[21] http://checkstyle.sourceforge.net/ 

[22] http://findbugs.sourceforge.net/ 

[23] https://www.docker.com/ 

 

https://www.jenkins.io/
https://www.perl.org/
https://www.gnu.org/
http://www.linuxfoundation.org/
https://subversion.apache.org/
http://windriver.com/products/vxworks/
https://gcc.gnu.org/
https://www.gnu.org/software/make/
https://www.atlassian.com/software/jira
https://git-scm.com/
http://bazaar.canonical.com/en/
https://www.mercurial-scm.org/
http://cppcheck.sourceforge.net/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://valgrind.org/
https://puppet.com/
http://www.ni.com/labview/
https://www.autoitscript.com/site/autoit/
http://robotframework.org/
http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/
https://www.docker.com/

