

ALMA software releases versus quality management:

and the winner is …

Erik Allaerta, Moreno Pasquatoa, Rubén Sotob

aEuropean Southern Observatory, Garching bei München, Germany
bJoint ALMA Observatory, Santiago, Chile

ABSTRACT

After its inauguration and the formal completion of the construction phase, the software development effort at the

Atacama Large Millimeter/submillimeter Array (ALMA) continues at roughly the same level as during construction –

gradually adding capabilities as required by and offered to the scientific community. In the run-up to a new yearly

Observing Cycle several software releases have to be prepared, incorporating this new functionality. However, the

ALMA observatory is used on a daily basis to produce scientific data for the approved projects within the current

Observing Cycle, and also by engineering teams to extend existing capabilities or to diagnose and fix problems – so the

preparation of new software releases up to their deployment competes for resources with all other activities. Testing a

new release and ensuring its quality is of course fundamental, but can on the other hand not monopolize the observatory's

resources or jeopardize its commitments to the scientific community.

Keywords: ALMA, computing, software releases, software quality

1. INTRODUCTION

The Atacama Large Millimetre /submillimetre Array (ALMA) consists of 66 high-precision radio-antennas, located on

the Chajnantor plateau in the Chilean Andes, at an elevation of 5000 metres. Its construction and operation is a joint

effort from partners on 3 different continents: the European Southern Observatory (ESO), the U.S. National Science

Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan. The development of the software to

operate this sophisticated array, acquire, monitor and evaluate scientific data is equally distributed over these three

continents, involving many institutes and software engineers.

The ALMA Observatory was inaugurated in March 2013, and the construction phase has formally been completed, but

the software development effort continues at roughly the same level as during construction, to cope with the increased

capabilities offered to the scientific community in the context of ALMA's yearly Observing Cycles. This implies that in

the course of a year several software releases have to be prepared, dealing with everything from proposal preparation and

submission software up to the deployment of the online software commanding the array at the official start of a new

cycle at the observatory. These software releases follow a pre-defined process; there are several quality aspects followed

up continuously as part of this process, providing a quality status overview to the developers, end-users (scientists and

engineers), plus the Release and Acceptance Managers. The corresponding report assessing the software quality of a new

release is submitted to the Acceptance Review.

As the ALMA observatory is fully operational, it is used on a daily basis to produce scientific data for the approved

projects, and also by engineering teams to extend existing capabilities or to diagnose and fix problems. Hence the

preparation of new software releases up to their deployment is "just one more activity", competing for resources with all

other activities. Testing a new release and ensuring its quality is acceptable to the observatory is of course fundamental,

but can on the other hand not monopolize the observatory's resources or jeopardize its commitments to the scientific

community, such as publicly announced milestones for the start of new observation cycles.

 eallaert@eso.org; phone +49 89 32006262; www.eso.org

mailto:eallaert@eso.org

In this paper we describe the tools and metrics used so far to monitor the quality of ALMA software releases, and the

results this has produced. After having applied this for a number of releases, we have also identified several areas within

the release or acceptance process where improvement is desired or needed, and where the stumbling blocks are.

2. THE ALMA SOFTWARE DEVELOPMENT AND DELIVERY PROCESS

2.1 Organization

The ALMA software as a whole consists of several “subsystems”, like the Baseline Correlator software or the

Observation Preparation software. Each of these subsystems has on the computing side a lead-engineer and typically

several software developers, who can be working in geographically distinct locations, even in different continents. All

ALMA software engineers working across the different executives and the Joint ALMA Observatory (JAO) on one or

more of these subsystems make up ALMA’s Integrated Computing Team (ICT). For each subsystem there is also on the

science side a so-called Subsystem-Scientist (SsS), who acts as the interface between ICT and the Science department.

This person assists in clarifying the requirements towards the developer(s), the priorities of the various requests and also

coordinates or participates personally to the testing of the new features in the later phases of the development and

deployment process.

2.2 Software development

The ALMA software is of course kept under configuration control with the help a Versioning Control System (VCS);

currently we use Subversion (SVN). The repository has a tree-structure reflecting the various subsystems. As there are

dependencies between several of these subsystems, building and testing the entire ALMA software has to happen in a

particular order.

The software is developed and deployed on customized Red Hat Enterprise Linux systems, and relies for most of the

subsystems on the in-house developed ALMA Common Software (ACS) as middleware/framework [1]. Subsystems are

subdivided into a set of “modules” that provide particular functionality; these modules are organized in a particular

directory structure, and that structure is expected by the provided acsMakefile (a makefile infrastructure based on GNU

make). One of the subdirectories of a module is supposed to contain software to test the functionality of this module in

an automatic way (unit testing), again using the acsMakefile and accompanying tools. The development and maintenance

of such unit test is the responsibility of the developer(s) editing the module.

2.3 Build and unit-test infrastructure

Software consists of programs (code), procedures, documentation and data. Therefore, when we refer to software quality

we implicitly consider the quality of each of its components.

Software quality assurance uses static and dynamic techniques to inspect the software. It is difficult to automate reviews

on procedures and documents, but there are many tools that can help in code analysis. At ESO we use Jenkins [2], a

continuous integration tool, to provide services such as code builds, code tests, calculation of code metrics and checks of

coding standards.

Code Builds: every hour Jenkins polls all subsystems belonging to the repository Trunk and to circa 8 different releases

(the ones actively used at the ALMA Observatory) for code changes. In case of variations, it builds the subsystems and

notifies developers per email about eventual failures. If the built subsystems contain code on which others rely upon,

Jenkins triggers further builds following the dependency tree. Feedback provided to developers offers them the chance to

react fast in order to fix the code.

Code Tests: for each subsystem that is built, Jenkins triggers a test process too. All unit tests are executed and, as for the

build, failure notification emails are sent (tests should be developed taking into consideration quality factors and should

implement all the requirements classified in them).

Developers are offered the possibility to choose between reports and/or detailed email notifications and to decide

whether to build and/or test the code.

Static analysis: ALMA software hosts many different programming languages. Jenkins inspects weekly the code and

publishes java/perl/python coding standards and violations reports using 5 different tools (one of them developed in-

house). Metrics are stored for 52 weeks and their trend over time is used to evaluate improvement/deterioration of

quality.

Different executives may follow different approaches on what part of the ALMA software they build and test, as they

may be responsible for a few subsystems only and focus on these only. They could also skip the releases that they are not

involved in, or limit themselves to the building of the software. In any case, all executives rely on some version of

Jenkins as the tool for triggering builds of their pieces of the ALMA software.

2.4 Issue tracking

ALMA uses in various areas Atlassian’s JIRA tool [3] for issue tracking. Also all activities from the ICT group are

followed up via a dedicated JIRA project. This allows to track progress on requests for new features, improvements, bug

issues, etcetera. The workflow has been configured to our specific needs, and depends on the issue type. Also the fields

that need to be filled out depend on the issue type, allowing to extract statistics and relevant information when and where

required.

2.5 Software delivery

The software delivery process adopted by ALMA is based on an incremental releases schema [4] that accumulates new

functionality to be delivered in a bi-monthly schedule for science commissioning. The release cycle considers

development, testing (verification and validation) and integration phases with a formal handover between each phase.

This model differs from the paradigm adopted during the construction phase by the smaller amount of features and

improvements included per release; however, it puts more emphasis on facilitating the integration, testing and debugging

of problems found during each phase. Of course, features and improvements must be scheduled according to the

observatory's milestones.

Once development and developer testing has been completed by an ICT group, the relevant tickets are handed over to the

Integration & Release Management (IRM) ICT group for integration into the release branch and testing. The developers

provide the testing instructions to the IRM group and collaborate with them to ensure a comprehensive and successful

testing campaign. Each feature or bug fix must be described in a corresponding JIRA ticket and contain the testing

instructions. IRM will collect the tickets for a dedicated incremental release and test them in the given time-window for

this incremental release – we call this the “verification phase”. This may involve participation from scientific staff or the

developers, in particular for new features or when science data is produced or accessed. The outcome is a formal report

outlining all contained features, links to test results, bug fixes, and a complete list of open issues.

Once the verification phase is finished, the “validation phase” starts. This phase is directed by the Department of Science

Operations (DSO), and involves the subsystem-scientists. It attempts to realistically reflect the final use of the software

in the observatory observing process, and apart from validating the new features also looks at eventual side-effects like

software performance and stability. Again this leads to a formal test report for each subsystem.

When all features necessary for deployment have been accumulated, eventually via multiple incremental releases, the

formal acceptance process starts. The first step is to place the release under change control by the Software

Configuration Control Board (SCCB). This means only fixes explicitly requested and accepted by the Release Manager

can be committed to the release branch, and major changes will have to be approved by the SCCB. The Acceptance

Manager will organize a Test Report Review (TRR), to evaluate the reports from the validation phase and prioritize

unresolved issues that need to be fixed before the real Acceptance Testing can start. Finally an Acceptance Review is

held, and if the Acceptance Review Committee gives a positive recommendation to the Director, he can formally

authorize the deployment of the release at the Observatory.

2.6 Software deployment

The deployment of accepted software is done simultaneously at all ALMA sites, i.e. the JAO and the different ALMA

Regional Centers (ARCs). It also includes the application of database model changes required by the new software that

are applied at Chile and replicated to the ARCs. This operation usually involves downtime of the applications included in

the acceptance. Deployment of new versions must of course take place before the observatory milestone that triggered

the acceptance process. Preliminary tests are performed in environments replicated from the production one in order to

make sure that everything is ready for the final deployment. All this work is coordinated by the deployment manager

who submits a report with the status of the tests and the software deployment at each site. He is also responsible for

tracking any issue associated to the deployment of new software.

3. SOFTWARE QUALITY ASSURANCE GOALS

3.1 Definition of quality and quality management

Opinions about what the term “quality” really stands for generally diverge, and the world of software engineering is no

exception to that. For our purposes, let’s stick to the definition given by Christof Ebert [5]: “Quality it the ability of a set

of inherent characteristics of a product, service, product component, or process to fulfil requirements of customers”.

Consequently, “Quality management is the sum of all planned systematic activities and processes for creating,

controlling, and assuring quality”. With “customers” we mean the end-users and stakeholders, i.e. the people who matter

in a project. A continuous quality management activity should therefore be to interact with the customers, understand

their requirements and their level of satisfaction with the fulfilment of requirements (or the level of fulfilment they

perceive).

Some authors – like Pressman [6] – see a deficiency in the above definition, as it could be interpreted that it frees the

customers from any professional responsibility. That is of course not the idea: the customers are accountable for

providing clear, well-founded functional and performance requirements, plus validating that the implemented software

complies with these requirements.

3.2 Commitment to quality

If the meaning and proper definition of quality is somewhat controversial, there is unanimity about the fact that quality is

a shared responsibility. Goals can be achieved only with contributions from all parties belonging to the project, from the

directors and project managers to the developers and testers to the customers. If there is no culture of quality at all levels

of the organization, the quality goals are very likely not going to be accomplished.

It should be clear that commitment to quality means in practice we need to find the right balance between quality-related

activities and other activities that cannot be postponed. But if it has been decided that a quality goal should be achieved,

then the planning should reflect this. This might have consequences on the number of features to implement (reduce the

number of features for a certain release to dedicate more time for instance to testing) or on the time to finish them

(dedicate more time to complete critical features) or on the resources allocation (get more time at the operational site to

run performance tests with real hardware, allocate from developers to this activity, …).

3.3 Metrics

In the process of improving quality, the first step is to take inventory of where we stand: what is OK, what’s missing,

what can or should be improved. Metrics are needed for that, for measuring deviations, and their history will show the

trend – hopefully in the right direction. Metrics can also help to specify where we want to go to, and which road to take

to get there. Metrication itself is not a standalone goal, but is a method to obtain certain objectives of quality. Hence what

we measure should be driven by what targets we have or what we want/need to improve (attributes to be measured). The

metrics should be relevant for all parties involved in the project; rather than rigorously collecting all possible metrics out

of the book, we should select the right ones for the project, in the sense that they are meaningful, well understood and

able to give useful information to QA responsible persons, developers, project managers and stakeholders. Metrics

should be valid (measure the required attributes) and reliable too (produce similar results under similar conditions). Once

metrics have been identified, comparative values should be defined based on standards, previous year’s performance, etc.

Finally, reporting methods and frequency of reporting concludes the process of quality metrics definition.

3.4 Quality goals

For the ALMA project there is an ambitious list of quality goals. These include:

 The metrication program; this includes monitoring the coverage offered by the automated tests, checking

compliance with some coding standards, the results of the testing phases, how many issues of which type and

severity go into a release. Much of this information can be extracted from JIRA and Jenkins.

 Monitoring the unit tests: do such tests exist in the first place? Do they run automatically? In case of failure is

there an acceptable justification?

 Classification of bugs: when bugs are categorized, we will hopefully see the weak spots and concentrate on

improving in this area. There is a lot of theory about this and a huge variety of possible categories. For instance

the original proposal from Beizer [7] – e.g. “unclear requirement” or “inaccurate design”.

 JIRA workflow monitoring: we rely heavily on the use of JIRA to track our activities and monitor the status of

issues. It is essential that the type-dependent workflow is followed, the tickets are kept up-to-date within a

reasonable amount of time, and tickets progress through the workflow at a pace corresponding to their priority.

 Empower the verification phase: adequate time and resources have to be allocated for an independent group of

testers to use real hardware at the Observatory to execute regression testing [8] and verify new features. The

earlier on problems are detected, the easier/cheaper it is to cure them.

 Release planning: it is important that developers do not consider their involvement finished until the

scientists/customers have validated the software and the release has been accepted; it is equally important to

have the customers on-board in the entire development process up to the deployment. For that, both sides need

to have a clear view on the planning and know when the software is supposed to be in which phase. We also

hold at the end of every acceptance release a “retrospective meeting” between the main Acceptance Review

Committee members for better understanding what went wrong and what can be further improved in the

software development, acceptance and deployment process.

 Software quality management itself: it is not enough to appoint one or more persons and give them the

corresponding title. The quality management team must be empowered to interface with all levels involved in

the software development and deployment process, to agree on the quality goals mentioned above, establish and

monitor them, guard continuously their achievement and intervene if this would not be the case.

4. REAL-LIFE QUALITY ASPECTS OF SOFTWARE RELEASES

This section outlines a number of software quality issues that we are faced with, in the context of producing software

releases in an operational Observatory environment – and how we address them (or intend to address them). These

matters are typically identified and written down as the result of retrospective meetings.

4.1 Issues are not current

It often happens that JIRA-issues are updated late compared to some activity involving this ticket, i.e. their status as kept

in the JIRA database does not reflect the actual status in reality. People tend to update tickets only as deadlines approach

– in some cases only minutes before the deadline – although the related activities took place long before. Anybody

looking at the contents or status of such an outdated ticket will end up with incomplete or wrong information. As JIRA is

used for metrication and to know how well a release is progressing, it is fundamental that the issues are kept up-to-date

in near real-time.

There is in our case only a very limited set of activities that lead to some automatic update of a JIRA-issue (like

committing code to SVN). Hence it is important to clarify to all involved that keeping tickets up-to-date is important;

from there on we need to rely largely on the self-discipline of all JIRA-users.

4.2 Use of non-authoritative data

JIRA allows to filter out a set of issues, and store them e.g. in an Excel table. Effectively some people tend to extract

such lists at the early stages of a release process, and from that point on they keep on working with these tables, without

giving the necessary feed-back into JIRA, nor using newer information from JIRA as the release proceeds. This is similar

to – or in fact worse than – the scenario described in section 4.1.

Here too we have to spread awareness about the necessity to use JIRA as the one and only authoritative source of

information about an issue, and rely on the self-discipline of the users. In any case, this behaviour may also be triggered

by a lack of knowledge on the use of JIRA. It is our task to make this use as straightforward as possible, by providing

common or popular filters, Kanban boards etc.

4.3 Late blocking issues

It happens that blocking issues are identified when we are getting very close to the acceptance date. So the risk is that

then the Acceptance Review will take place while there are active blockers; the acceptance can then only be provisional,

subject to the resolution of these blockers.

To address this, we need to put more emphasis on the verification and validation tests, so we can detect blocker issues

earlier in the process. Also, we need to execute more exhaustive regression tests, also early on during the acceptance

testing, to have sufficient time to solve eventual problems before the Acceptance Review.

This implies of course that there needs to be sufficient time and resources for these exhaustive tests, and this must be

reflected in the planning of the various phases of the software release process.

4.4 De-scoping

When collecting the issues that need or are expected to go into a release, you can easily end up with a bloated wish-list of

nice-to-have features, rather than a list limited to the essential, critical issues that can realistically be implemented and

tested in the given time with the given resources. And it is in any case often very difficult to give estimates with narrow

error margins of the effort required to implement and test an issue. The result is more often than not a too optimistic

planning.

There are basically only 2 ways to deal with wit this bottleneck: either with more resources, or with fewer issues.

Assuming that extra resources are difficult to obtain, the software release process must then provide options to adjust the

content of a release to the available resources. This should happen as soon as it becomes evident that not all issues can

make it into the release, typically long before the TRR. At that stage you risk to dilute the efforts of developers and

testers over a large number of issues that in any case won’t make it all into the release, rather than let them focus on the

essential ones. So there needs to be a continuous negotiation about priorities between the SsS and the developers. On top

of that, for major releases “priority revision milestone” needs to be added in the release process. This should come

together with a consequent de-scoping of the non-essential issues.

4.5 New software delivery process

ALMA has concluded its construction phase and is now moving further into full operation. This transition implies more

emphasis on system robustness and stability in order to maintain continuous operations and a reduction of the technical

time dedicated to commissioning and verification. For this reason, the software delivery process needs to be adjusted to

the current Observatory state. Thus, given the hardware access restrictions, simulation capabilities will play a more

prominent role in the verification phase. The number of new features/improvements per release will be reduced, but the

emphasis on software robustness will become essential. System stability turns into a critical point in order to maintain

the observatory working most of the time. Therefore, the downtime due to new software releases must be strictly

controlled and minimized.

During 2015, an agile approach for the software delivery process [4] was proposed to be adopted by the Observatory.

This approach is based on the existence of a stable branch, into which new features and capabilities are merged for

verification. Developers will commit functionality in separate branches and the verification team will merge them to the

stable branch for verification purposes. If verification passed, science testers should validate the same functionality from

the scientific point of view. After successful validation, the patch can be integrated into the stable branch and considered

ready for science observations. The deployment of validated software in the production environment can be done

immediately after validation, instead of waiting for an acceptance process. Bug-fixes for the software deployed in

production should follow a similar approach.

This model differs of the incremental approach since the integration of new software into the stable branch is controlled

by the verification team instead of the developers. Stability should be also guaranteed since only verified functionality or

bug fixes are included into the stable branch. Features or bug-fixes, which did not pass verification or validation phases,

are rejected and scheduled for another iteration. The observatory's technical times are also optimized since only software,

which has passed simulation tests, is considered for verification using operational hardware.

4.6 Inactive issues

For the ICT-project in JIRA there are yearly well over 2000 tickets created, distributed over various types (e.g. bugs,

improvements, new features) and various software subsystems. Not all of these tickets are urgent, i.e. some of these risk

to be postponed (repeatedly) in view of the higher priority ones and a lack of resources, or due to the planning which

foresees that some issues should be addressed only later on. We need to review regularly this list of inactive tickets, as

the planning may have evolved, and some tickets may not be current anymore due to other issues that have been

implemented in the meantime.

There are different approaches on how to handle such inactive issues, and the policy chosen by different organizations

varies widely - often even with an obvious lack of consensus within a single organization. Such policy ranges from “do

nothing” as one extreme to “close automatically any issue type after a couple of weeks of inactivity” on the other

extreme.

The arguments that are raised against automatic closing are typically:

 the fact that some tickets are inactive does not necessarily imply that they would be irrelevant or not real - they

may just have a lower priority/urgency than some other tickets. Issues are meant to get fixed, instead of being

closed simply because they are "too old".

 the number of open issues is not necessarily a good metric. After all, if one does a clean-up, the metric will

appear better, but it does not impact the quality of the software at all - the amount of essential work to be done

remains the same.

 it is hard or even impossible to come up with a general automated procedure that does everything right. It may

be necessary to actually look at these inactive issues, one by one, and make a call.

On the other hand, the arguments in favour of a (occasional, periodic or continuously automatic) clean-up are:

 open issues that remain inactive for a long period obfuscate the real issues, and make it harder to focus on these

real issues.

 if an issue has been inactive for so long, it is (very) unlikely that anybody will ever look at it. So better make

that clear by closing it.

ALMA ICT has chosen a middle-of-the-road approach; we identify about twice a year the set of inactive issues, whereby

the “inactivity criteria” depend on the issue type and its workflow status. The people involved in these tickets are notified

about the inactivity, and get a couple of weeks to react on this (by adding a comment to the ticket, changing its status,

priority, due date, or whatever). This is followed by a second reminder. Finally, tickets which still did not receive any

attention will be closed. Typically this will result in about half of these tickets being closed (the majority by the users

themselves), while the other half will get one or the other update.

5. CONCLUSIONS

Although the JAO is a fully functional observatory, it still requires regular software updates and upgrades, and it will

keep on doing so in the foreseeable future. The need to test and deploy these software releases competes to some extent

for array time with the scientific observations. However, it is clear that the quality and efficiency of observations depend

on the quality of the underlying software. Hence the scientists have an undeniable interest in obtaining software of

adequate, proven quality. This also means everyone involved in the development, deployment and use of this software

must pull on the same end of the rope, and consider the other side “partner” rather than “competitor”. Using all resources

to do science observations would lead to software releases of bad quality, while attempting to build the perfect piece of

software would be prohibitively expensive and take too big a drain on the observation resources. That reality steers to

meeting each other half way.

At ALMA the formal application of software quality management is gradually gaining weight as consciousness about

quality principles and benefits is spreading. The activities listed in this paper are executed to address some of the issues

we have been confronted with. We have made progress, but still see a lot of room for improvement. However, thinking

there can be “winners” and “losers” is wrong – if we don’t do this right, we’ll all be losers.

REFERENCES

[1] Caproni, A., Colomer, P., Jeram B., Mañas, M., Sommer, H. and Chiozzi, G., “ALMA common software from

development to operations,” Proc. SPIE 9913 (2016).

[2] Jenkins project, “Jenkins Documentation,” <https://jenkins.io/doc/> (23 May 2016)

[3] Attlasian Company, “JIRA Software,” < https://www.atlassian.com/software/jira> (21 May 2016).

[4] Soto, R., Shen, TC., Ibsen, J. and Saez, N., “ALMA Release Management: A Practical Approach,” Proc.

ICALEPCS 2015 (2015).

[5] Ebert, C. and Dumke, R., [Software Measurement], Springer, Heidelberg & New York (2007).

[6] Pressman, R., [Software Engineering: A Practitioner’s Approach], McGraw-Hill International, London (2000).

[7] Beizer, B., [Software Testing Techniques], International Thomson Computer Press, New York (1990).

[8] Soto, R., Shen, TC., Ibsen, J., et al., “ALMA software regression tests: the evolution under an operational

environment,” Proc. SPIE 8451, 84511R (2012).

