
ESO Phase 3 automatic data validation:
Groovy-based tool to assure the compliance of the reduced

data with the Science Data Product Standard

L. Mascettia, V. Forch̀ıb, M. Arnaboldib, N. Delmotteb, A. Micolb, J. Retzlaffb, and S.
Zampierib

aTERMA GmbH, Europahaus, Europaplatz 5, 64293 Darmstadt, Germany
bEuropean Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany

ABSTRACT

The ESO Phase 3 infrastructure provides a channel to submit reduced data products for publication to the
astronomical community and long-term data preservation in the ESO Science Archive Facility. To be integrated
into Phase 3, data must comply to the ESO Science Data Product Standard regarding format (one unique
standard data format is associated to each type of product, like image, spectrum, IFU cube, etc.) and required
metadata. ESO has developed a Groovy based tool that carries out an automatic validation of the submitted
reduced products that is triggered when data are uploaded and then submitted. Here we present how the tool
is structured and which checks are implemented.

Keywords: ESO Phase 3, reduced products, Data Products Standard, Science Archive, data validation, quality
control, Groovy

1. INTRODUCTION

Phase 3∗ denotes the process of preparation, validation and ingestion of science reduced products for storage in
the ESO Science Archive Facility and subsequent publication to the scientific community.

According to the ESO’s policies governing Phase 3, returning reduced data to ESO is mandatory for ESO
Public Surveys1 and for ESO Large Programmes. For other ESO programmes there is no obligation, but PIs are
invited to take advantage of Phase 3.

To ensure the successful integration of the new products into the ESO Archive, the data have to comply with
the ESO Science Data Products Standard (SDPS)†, a document that defines the structure and data format of
reduced products starting from high-level requirements down to the definition of individual metadata items. The
required FITS keywords are relevant for data characterisation, quality and processing provenance to trace back
the original raw data. It also defines how to encode ancillary data files associated to the science products. The
data provider is in charge of preparing the products according to that standard and then submit them to ESO.

Before the submitted data can be archived and published, they undergo a validation process, covered in
details in the submitted contribution by N. Delmotte.2 Part of the validation process is implemented in the
Phase 3 software and automatically executed once the data have been uploaded to the ESO FTP server and it
is the focus of this contribution. It performs a set of tests for the presence of mandatory keywords, type of such
keywords, etc. After this step is successful an in-depth content validation is performed by the Archive Science
Group (ASG) at ESO. More details are presented in Section 4. When the validation process certifies that the
data are compliant, they can be archived and published. Hence, they become accessible to the community via
the dedicated query forms as shown in Fig. 1.

Further author information: send correspondence to Laura Mascetti, Vincenzo Forch̀ı or Archive Science Group (ASG)
Laura Mascetti, E-mail: lmascett@partner.eso.org
Vincenzo Forch̀ı, E-mail: vforchi@eso.org
ASG, E-mail: usd-help@eso.org, subject: Phase 3
∗http://www.eso.org/sci/observing/phase3.html
†http://www.eso.org/sci/observing/phase3/p3sdpstd.pdf

http://www.eso.org/sci/observing/phase3.html
http://www.eso.org/sci/observing/phase3/p3sdpstd.pdf

Figure 1. Thanks to the definition of the standard Phase 3 keywords, the data can be seamlessly accessed from a
unique query form http://archive.eso.org/wdb/wdb/adp/phase3_main/form, independently of their original science
programme.

2. DATA MODEL

The following data types are covered by the SDPS:

• 1-D Spectra, PRODCATG=‘SCIENCE.SPECTRUM’3

in binary table format: one primary header and one single extension (compliant to IVOA Spectral Data
Model).
No data in the primary HDU → NAXIS=0 / Length of data axes.
Support for 2-D spectral frames as ancillary files.

• Images, PRODCATG=‘SCIENCE.IMAGE’ or ‘SCIENCE.MEFIMAGE’
Astrometrically and photometrically calibrated FITS images with associated confidence/weight maps;
quality parameters required are for example limiting magnitudes (ABMAGLIM keyword) and PSF character-
isation (PSF FWHM).
Single images are stored in the primary HDU.
Support for multiple images stored in Multi-Extension FITS format (MEF image).

• Sub-mm Flux Maps, PRODCATG=‘SCIENCE.IMAGE.FLUXMAP’
in order to support APEX/LABOCA products. The format is very similar to the one defined for IMAGE.

• Source Lists, PRODCATG=‘SCIENCE.SRCTBL’
Single-band source catalogues directly extracted from the image to which they are associated to (via the
PROVi keyword).

• IFU 3-D Data Cubes, PRODCATG=‘SCIENCE.CUBE.IFS’
The data cube is stored in a FITS image extension, no data in the primary HDU.

http://archive.eso.org/wdb/wdb/adp/phase3_main/form

• Catalogues, PRODCATG=‘SCIENCE.CATALOG’
Uniform tabular structure including content descriptors (employing UCDs).
Multi file format supported, especially for Large Surveys catalogues, Tile-by-Tile fashion:
PRODCATG=‘SCIENCE.MCATALOG’ and ‘SCIENCE.CATALOGTILE’.
They are also served via a dedicated query interface for catalogues, ESO Catalogue Facility‡.

3. RELEASE MANAGER

Figure 2. Screen-shot of the Release Manager.

The Release Manager (RM)§ is a dedicated web application for controlling the entire Phase 3 data submission
process by ESO operators and data providers. It allows to trigger the verification of the files, open new releases,
delegate part of the Phase 3 tasks, upload the data documentation, visualise the summary of the release content
and submit data. Fig. 2 shows the interface.

4. DATA VALIDATION

4.1 Ingestion Tool

The Phase 3 Ingestion Tool (IT) is the software underneath that governs the Phase 3 workflow. It is written in
Groovy. Apache Groovy is an object-oriented programming language for the Java platform. It is a dynamic
language with features similar to those of Python, Ruby, Perl and Smalltalk. It can be used as a scripting language
for the Java Platform, is dynamically compiled to Java Virtual Machine (JVM) bytecode and interoperates with
other Java code and libraries¶.

‡http://www.eso.org/qi/
§http://www.eso.org/rm/
¶http://www.groovy-lang.org/

http://www.eso.org/qi/
http://www.eso.org/rm/
http://www.groovy-lang.org/

The IT runs as a daemon and it periodically checks for releases in OPEN, VALIDATING, CLOSED and
ARCHIVING state and performs several operations, one of which is the data verification. After the data have
been prepared and uploaded to the ESO server, fitsverify‖ runs for each FITS file to check conformity with the
FITS standard. The batch structure is also verified by reporting errors when PRODCATG keyword is missing,
missing or duplicated PROVi are found or when the association of the science files with the ancillary files are
incorrect or incomplete. The integrity of the non-FITS files is ensured by computing the MD5 hash for the file
and comparing it with the value of the keyword ASSOMi stored in the header of the related science FITS file.
See Appendix A for more details about the checks regarding the batch structure.

Figure 3. Ingestion Tool State Machine. It represents the status of a batch and who can trigger changes of its status. The
first actions are triggered by the Principal Investigator (PI), the IT that runs as a demon reacts to the changes and ASG
is in charged of reviewing the content and accept or reopen the batch, then trigger the archiving process. The Database
Content Management group (DBCM) is taking care of the publication process after the archiving.

The IT then performs the Phase 3 format and provenance verification for each file. To do this, the validation
rules (see Appendix B for more details regarding the checks involved) are dynamically added to the class path,
this means that the tool does not need to be restarted if the rules are updated. Possible issues concerning
the files are displayed in the RM and need to be fixed before proceeding. The data provider has then to close
the submission via the RM. By closing the Phase 3 batch, the respective FTP directory turns into read-only
mode and data cannot be added nor modified by the data provider. This signal triggers again the verification
process that, at the end of its execution, sends a notification E-mail with possible issues and output from the
automatic checks performed (all the notification are configurable and can be disabled or enabled). If problems
are reported as a result of the Phase 3 format and provenance verification process, these need to be fixed by
the data provider, and the data need to be replaced on the Phase 3 FTP server before proceeding. When the
verification is successful, the data have still to be revised by ASG, which performs an in depth content validation,
including cross-checks with the provided documentation and several other checks that cannot be automatically

‖https://heasarc.gsfc.nasa.gov/docs/software/ftools/fitsverify/

https://heasarc.gsfc.nasa.gov/docs/software/ftools/fitsverify/

implemented, like spotting outliers. For a complete overview of the sequence of steps of the Phase 3 process
please refer to the Phase 3 web pages, in particular to
http://www.eso.org/sci/observing/phase3/overview.html.

4.2 Rules for the verification

Figure 4. The class ValidationFactory assigns a class to each category of FITS files, as defined by the header keyword
PRODCATG.

Figure 5. Class hierarchy: schematic view of the Groovy classes used for the file verification.

The class FitsFile is part of the core of the Phase 3 software. It defines an interface with the FITS files,
allows for easy access to the keywords and data in the various FITS HDUs. This class makes heavy use of the
dynamic features of Groovy because it creates dynamic properties based on the keywords defined in the FITS
file. This allows the users to access the keywords in a more compact way (the batch content summary can be
displayed via the RM). These properties are then cached to minimise the access to the disk.

The class Phase3ValidationFactory assigns to each file, reading the header keyword PRODCATG, the rules to
be applied, in the way shown in Fig. 4.

The class hierarchy, shown in Fig. 5, defines all the tests that a certain file category must undergo: auxiliary
files, for example, must only comply to the tests performed in Phase3FitsFile, while a science catalog has
to comply also to what is defined in ScienceFile and ScienceCatalog. All the FITS files, besides being valid
FITS files (passing fitsverify) must have CHECKSUM and DATASUM present in each HDU, as checked by the class
Phase3FitsFile.

http://www.eso.org/sci/observing/phase3/overview.html

The specific checks for each category regard:

• presence of mandatory keywords,

• or keywords not allowed (like BUNIT in spectra),

• then for each mandatory keywords the function checkMandatoryKeywords calls an other function, check-
KeywordType, that checks the type of the keyword value according to a specified dictionary.

• Moreover, the exact value of some keywords is checked, or whether the value is in a given range, allowing
certain tolerance or whether the value is within a list of values. There are also cross-header checks that
involve keywords in different HDUs.

• Additional checks on the data themselves are performed, this is for example the case of 1-D spectra where
it is required that the wavelength array is strictly increasing.

• Checks between data and metadata are also performed (for example, this is the case of WAVELMIN and
WAVELMAX in the spectral case, that are checked against the first and last data values in the wavelength
array).

• The existence of required extensions is also checked, by extension name.

4.3 Future Improvements

It is foreseen to expand the automatic checks to include the consistency of some keyword values with the
provenance and other files part of the batch (like the INSTRUME, TELESCOP and ORIGIN values, NCOMBINE and
other information that have to be propagated or derived from other files), including them in a new part that
can be seen as a batch verification, in addition to the already implemented file-by-file verification. This will
significantly improve the efficiency of the Phase 3 workflow, by decreasing the time between submission and
publication. Data provider will be notified at an earlier stage of possible issues with the data and the workload
for ASG concerning all the manual tests performed will decrease. For more details on this aspect, please refer
to the submitted contribution by J. Retzlaff.4

APPENDIX A. AUTOMATIC CHECKS IMPLEMENTED IN THE BATCH
STRUCTURE VERIFICATION

Checks implemented to verify the batch structure.

- Run fitsverify for FITS files

- Check for the following errors in the phase3 keywords:

1. Files without PRODCATG

2. ASSO[CNM]i keyword in non SCIENCE file

3. Missing ASSONi keywords (e.g. ASSOC1, ASSOC3) for SCIENCE files

4. Presence of ASSOCi or ASSOMi in case ASSONi points to a FITS file

5. Absence of ASSOCi and ASSOMi in case ASSONi is not a FITS file

6. Duplicated ASSONi

7. Missing and orphaned ASSOCi and ASSOMi

8. Missing PROVi keywords (e.g. PROV1, PROV3)

9. Duplicated PROVi entries

- Flag empty batches

- Flag duplicate filenames

- Flag outliers in the batch directory (files not belonging to any dataset)

- In case of updates: check for conflicts, duplicates, unresolved files

- Verify checksum of non FITS files

- Resolve provenance (check that the files mentioned are already archived or uploaded)

- Flag mixed ways of encoding provenances within the same file

APPENDIX B. AUTOMATIC CHECKS IMPLEMENTED IN THE FILE-BY-FILE
VERIFICATION

Detailed checks implemented for each file category. The header keywords are defined in the SDPS.

All Phase3 files

CHECKSUM and DATASUM in all extensions

SCIENCE.*

LONGSTR and CONTINUE are not allowed

Mandatory keywords: ORIGIN, PROG_ID, TELESCOP, INSTRUME, OBSTECH, DATE,

MJD-OBS, MJD-END, PROCSOFT

DATE format yyyy-MM-dd

MJD-END >= MJD-OBS

check MJD-OBS value. It cannot be < 40587

CDELT[123] are not allowed

PC[12]_[12] are not allowed

PROG_ID=MULTI if PROGID1 is defined

if PROG_ID is MULTI PROGID1 and PROGID2 must be defined

EXPTIME >= 0, if defined

EXPTIME < (TEXPTIME+0.01)

EXPTIME <= TEXPTIME, if defined

TL_OFFAN is >= -999, if defined

if ORIGIN not like ’ESO%’ and not APEX then NOESODAT must be T

FLUXCAL in ABSOLUTE, UNCALIBRATED

RA/DEC in the correct range

SKY_RES, SKY_RERR, ABMAGLIM in the correct range

WAVELMIN/MAX consistent

SPEC_RES not negative

PIXNOISE not negative

PROV0* not allowed

OBID0* not allowed

EXTNAME defined in all extensions, PHASE3PROVENANCE and PHASE3CATALOG must be unique.

ORIGFILE only in primary HDU

PRODCATG only in primary HDU

SCIENCE.IMAGE

Mandatory keywords: BUNIT, FILTER, OBJECT, RADECSYS, FLUXCAL, PHOTSYS, REFERENC

Mandatory keywords: RA, DEC, EQUINOX, EXPTIME, TEXPTIME, M_EPOCH

if ORIGIN == GRANTECAN

TELESCOP == GTC

NOESODAT == true

else

mandatory keywords: NCOMBNE, OBID1

if MEF

NAXIS == 0

ext:NAXIS == 2

Mandatory keywords in extenstions: BUNIT, PHOTZP, PHOTSYS, ABMAGLIM, ABMAGSAT,

PSF_FWHM, and ELLIPTIC

Mandatory keywords in extenstions: CTYPE[12], CRVAL[12], CRPIX[12], CD[12]_[12]

else

NAXIS == 2

Mandatory keywords: BUNIT, PHOTZP, PHOTSYS, ABMAGLIM, ABMAGSAT, PSF_FWHM,

and ELLIPTIC

Mandatory keywords: CTYPE[12], CRVAL[12], CRPIX[12], CD[12]_[12]

FLUXCAL in [ABSOLUTE, UNCALIBRATED]

if VIRCAM or OMEGACAM

Mandatory keywords: IMATYPE, TL_RA, TL_DEC, TL_OFFAN, EPS_REG, ASSON1

if MEF

Mandatory keyword in extensions: ELLIPTIC

else

Mandatory keyword: ELLIPTIC

IMATYPE = TILE

if not deepProduct

Mandatory keyword: DIT

if VIRCAM

Mandatory keywords: NJITTER, NOFFSETS, NUSTEP, NDIT

if OMEGACAM

Mandatory keywords: NCOMBINE, TL_ID

TELESCOP = ESO-VST

ORIGIN = ESO-PARANAL

OBSTECH = IMAGE,DITHER

NDIT is int, if defined

SCIENCE.SRCTBL

Mandatory keywords: FILTER, OBJECT, RADECSYS, 1:PHOTSYS, IMATYPE, REFERENC

Mandatory keywords: RA, DEC, EQUINOX, OBID1, M_EPOCH, ISAMP

INSTRUME in OMEGACAM, VIRCAM, HAWKI, VIMOS

if multiBand

mandatory keywords: FILTER1, FILTER2, PROV2, APMATCHD

mandatory keywords: ext:FPRA[1-4], ext:FPDE[1-4], ext:MAGLIM[1-2]

else

mandatory keywords: EXPTIME, TEXPTIME, ext:ABMAGLIM, ext:ABMAGSAT,

ext:PSF_FWHM, ext:ELLIPTIC

IMATYPE in [PAWPRINT, TILE, VSTRIPES]

if VIRCAM or OMEGACAM

Mandatory keywords: TL_RA, TL_DEC, TL_OFFAN, EPS_REG

if OMEGACAM

Mandatory keywords: TL_ID

TELESCOP = ESO-VST

ORIGIN = ESO-PARANAL

OBSTECH in [IMAGE,DITHER, IMAGE,JITTER, IMAGE,OFFSET, IMAGE,STARE]

mandatory keywords TFORMi, TTYPEi, for every column in every table extension

SCIENCE.IMAGE.FLUXMAP

Mandatory keywords: BUNIT, FEBE1, FILTER, OBJECT, RADECSYS, TIMESYS, FLUXCAL, ASSON1

Mandatory keywords: REFERENC, MAPMODE, SKY_RES, BNOISE

Mandatory keywords: CTYPE[12], CRVAL[12], CRPIX[12], CD[12]_[12]

Mandatory keywords: NAXIS1, NAXIS2, RA, DEC, EQUINOX, FLUXERR,

WAVELMIN, WAVELMAX, NCOMBINE

Mandatory double keywords:

FLUXCAL is ABSOLUTE

TELESCOP = APEX-12m

ORIGIN = APEX

if FEBE1 is LABOCA-ABBA

FILTER is 870u

WAVELMIN is 7.994E05

WAVELMAX is 9.517E05

SCIENCE.SPECTRUM

cross-header checks

abs(0:RA-1:RA) <= 1e-7

abs(0:DEC-1:DEC) <= 1e-7

0:OBJECT = 1:OBJECT

1:TELAPSE >= TEXPTIME (tol=0.1s)

1:TELAPSE = MJD-END - MJD-OBS (tol=0.1s)

1:TMID = (MJD-OBS + MJD-END)/2 (tol=1e-4)

1:SPEC_VAL = (WAVELMIN+WAVELMAX)/2 (tol=1e-3)

1:SPEC_BW = WAVELMAX-WAVELMIN (tol=1e-3)

SPEC_BIN = (WAVELMAX - WAVELMIN)/(1:NELEM-1)) (tol=1e-3)

primary HDU

mandatory keywords: DISPELEM, SPECSYS, OBJECT, RADECSYS, FLUXCAL, REFERENC

mandatory keywords: BITPIX, NAXIS, RA, DEC, EQUINOX, WAVELMIN, WAVELMAX,

SPEC_BIN, FLUXERR, EXPTIME, TEXPTIME, SNR, SPEC_RES

mandatory keywords: SIMPLE, EXTEND, M_EPOCH, TOT_FLUX, CONTNORM

if ORIGIN == GRANTECAN

TELESCOP == GTC

NOESODAT == true

else

mandatory keywords: NCOMBNE, OBID1

BUNIT, CD1_1 are not allowed

NAXIS = 0

abs(EXPTIME-TEXPTIME) <= 0.01

if FLUXCAL = ABSOLUTE

FLUXERR = -2 or FLUXERR in [0..100]

if not XSHOOTER

mandatory keywords: EXT_OBJ

extension HDU header

mandatory keywords: VOCLASS, OBJECT, EXTNAME, TITLE

mandatory keywords: TTYPE[1-3], TUTYP[1-3], TFORM[1-3], TUNIT[1-3], TUCD[1-3]

mandatory double keywords: RA, DEC, APERTURE, TELAPSE, TMID, SPEC_VAL, SPEC_BW,

TFIELDS, NELEM, TDMIN1, TDMAX1

BUNIT is not allowed

NAXIS = 2

NAXIS2 = 1

TUTYP1 matches (Spectrum.|spec:|eso:)Data.SpectralAxis.Value

TUTYP2 matches (Spectrum.|spec:|eso:)Data.FluxAxis.Value

TUTYP3 matches (Spectrum.|spec:|eso:)Data.FluxAxis.Accuracy.StatError

TTYPE1 in WAVE, FREQ, ENER

TTYPE2 begins with FLUX

TTYPE3 begins with ERR

TFORMi must all be the same

VOPUB = ESO/SAF

GCOUNT = 1

PCOUNT = 0

extension HDU data

the data in the first column is strictly increasing

1:NELEM = #elements in the first column

if TTYPE1 == WAVE

WAVELMIN = data[0][0] (tol = 0.0001), handles only nm, um and ang

WAVELMAX = data[0][-1] (tol = 0.0001), handles only nm, um and ang

TDMIN1 = data[0][0] (tol = 0.0001)

TDMAX1 = data[0][-1] (tol = 0.0001)

SCIENCE.CUBE.IFS

cross-header checks

primary HDU

Mandatory keywords: BUNIT, OBJECT, RADECSYS, FLUXCAL, REFERENC, DATE-OBS,

PROV1, OBSTECH, ASSON1

Mandatory keywords: RA, DEC, EQUINOX, EXPTIME, TEXPTIME

Mandatory keywords: NCOMBINE, OBID1, WAVELMIN, WAVELMAX, SPEC_RES, SKY_RES

FILTER is not allowed

specific checks for MUSE

check WAVELMIN/MAX range

check SPEC_RES range

extension HDU header

mandatory keywords: NAXIS3,

EXTNAME=’DATA’ must be present in one extension (the other extensions are optional)

if there is an extension named STAT

STAT:SCIDATA must be DATA

DATA:SCIDATA must be STAT

NAXIS=3 in all extensions

SCIENCE.CATALOG, SCIENCE.MCATALOG, SCIENCE.CATALOGTILE

primary HDU

FILTER=MULTI if FILTER1 is defined only for OBSTECH=*IMAGING*

if FILTER is MULTI FILTER1 and FILTER2 must be defined

PRODCATG is catalog main file

Mandatory keyword: REFERENC

PRODCATG is catalog tile

Mandatory keywords: RA, DEC, OBJECT, FPRA1, FPDE1, SKYSQDEG

NAXIS = 0

if PRODCATG is SCIENCE.CATALOG

if APEXBOL

ORIGIN = APEX

TELESCOP = APEX-12m

Mandatory keywords: FILTER, TIMESYS, WAVELMIN, WAVELMAX, SKY_RES, BNOISE

extenion HDU header

XTENSION = BINTABLE

EXTNAME = PHASE3CATALOG

Mandatory keyword: TFIELDS

TDMINi < TDMAXi, if both defined

TCOMMi must be defined and cannot be empty

TFORMi must be defined and must follow the standard

TSCALi is not allowed

TTYPEi must be defined, cannot be an SQL reserved keywords

and must match the pattern [A-Za-z][A-Za-z_0-9]*

TUCDi must be defined, composed of the UCD valid atoms

and must define one and only one identifier (meta.id;meta.main)

TUNITi must be defined

TZEROi is not allowed

TXLNKi must be ARCFILE, ORIGFILE or CATALOG

TTYPEi must be unique, case insensitive

extension HDU data

ID column values must be unique and not null

numeric values must be within TDMIN and TDMAX, if they are defined

ACKNOWLEDGMENTS

We would like to thank Ignacio Vera, Database Architect at ESO for his efforts and support. A special thanks
to Cristiano Da Rocha from Terma GmbH for his support.

REFERENCES

[1] Arnaboldi, M., “Public Surveys at ESO” Proc. SPIE 9910-11 (2016), this volume.

[2] Delmotte, N., “Validation of ESO Phase 3 data submissions” Proc. SPIE 9910-7 (2016), this volume.

[3] Micol, A., “ESO Science Data Product Standard for 1D Spectral Products” Proc. SPIE 9910-121 (2016),
this volume.

[4] Retzlaff, J., “Publication of science data products through the ESO Archive: lessons learned and future
evolution” Proc. SPIE 9910-8 (2016), this volume.

	INTRODUCTION
	DATA MODEL
	Release Manager
	Data Validation
	Ingestion Tool
	Rules for the verification
	Future Improvements

	Automatic checks implemented in the batch structure verification
	Automatic checks implemented in the file-by-file verification

