MathWorks Simulink and C++ integration with the new VLT PLC-
based standard development platform for instrument control systems

Mario J. Kiekebusch ", Nicola Di Lieto ®, Stefan Sandrock ?, Dan Popovic * Gianluca Chiozzi *
“European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Miinchen.

ABSTRACT

ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems
(new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have
evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of
BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks
Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested
solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal
capabilities of the traditional PLC programming environments.

We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for
instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based
controller implemented in Simulink and used for the control of telescope main axes.

Keywords: VLT, Instrument Control, PLC, C++, Simulink, TwinCAT

1. TECHNOLOGY OVERVIEW

BECKHOFF Embedded PCs and EtherCAT is the proposed solution as the new development platform for VLT
instrument control systems'. This solution includes TwinCAT (TC) software which is the implementation of the
EtherCAT master that provides deterministic cyclic access to field inputs and outputs as well as to variables in the
traditional IEC 61131-3 languages. The TwinCAT version 3 (TC3) launched in 2010 has been a major upgrade which
includes the eXtended Automation Technlogy (XAT) expanding its capabilities with many new powerful functions’.
Among those new features is the support for high-level languages such as C/C++ and Simulink for real-time
applications.

C++ Development Environment

Starting from TC3, the BECKHOFF software is integrated in the Microsoft Visual Studio (VS) Integrated Development
Environment (IDE). All TC3 components are encapsulated in a so-called “solution”. Developers can implement PLC and
C++ code within the same IDE. Templates are provided to create the various types of projects and files, Figure 1 shows
the default directory structure generated when selecting a C++ driver project.

Additional Licenses

The free version of the VS shell that is integrated with the TC3 installation package cannot be used for developing C++
code. The Professional Edition of VS is required in order to be able to compile C++ code for TC3. All our tests were
performed using VS Professional 2012. There is also a specific run-time license required for the execution of software
developed in C++.

! mkiekebu@eso.org; phone +49 89 32006-0; fax: +49 89 320 2362.

Software and Cyberinfrastructure for Astronomy Ill, edited by Gianluca Chiozzi, Nicole M. Radziwill,
Proc. of SPIE Vol. 9152, 91522B - © 2014 SPIE - CCC code: 0277-786X/14/$18
doi: 10.1117/12.2056381

Proc. of SPIE Vol. 9152 91522B-1

Solution Explarer > 1 x SigGen.tmc [TMC Editor] FB_StateMachine

(-] Q '@ -a EI @ <> o CSigGen - @ CycleUpdate(ITcTask * ipTask, [Tclnknown *ipCaller, ULONG_PTR. context)
. ///<AutoGeneratedContent id="ImplementationOf_ITcCyclic">
ceachiEolutionleploteit el P~ EHRESULT CSigGen::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)
+i) Solution 'SigGenSol' (2 projects) - {
4+ SigGenSol HRESULT hr = S_0OK;
bl SVSTEM
b MOTION m_counter+=m_Inputs.Value;
> @ PLC m_Outputs.Value=m_counter;
4 ECe iF (Im_bRun)
4 [SigGen return hr;
4+ SigGen Project
b & External Depender excitation_update(&m_excitationData);
b Header Files excitation_output(&m_excitationData, &m_Outputs.SignalOutputReal);
4 &l Source Files m_Outputs.SignalOutputUInt = (UTNT32)m_Outputs.SignalOutputReal;
*++ SigGen.cpp
+0) SigGenirc switch (m_State)
+++ SigGenClassFac {
#+ TcPechepp case 1:
4 &l TMCFiles m_counter++;
+ | SigGentmc break;
b & TwinCAT RT Files case 2: e
b TwinCAT UM Files 'anZ:En e
4 [H] SigGen_Obj1 (CSigGer 3
b Inputs return hr;
b W Qutputs 1
b Eio L 0% -

Figure 1: MS Visual Studio solution explorer and C++ editor.

TC3 has a modular architecture. All the real-time components are encapsulated in modules which are managed by the
run-time system. TC3 uses the concepts from “Component Object Model (COM)” to define the characteristics and
behavior of the modules. TwinCAT COM (TcCOM) is the adaptation of COM to the automation technology that allows
modules implemented in different languages to interact seamlessly in the real-time context, see Figure 2.

TwinCAT Transport Layer — ADS]

TwinCAT Automation Device Driver - ADD

!

Fieldbus]

Figure 2: Modular TC3 run-time (source: BECKHOFF website)

Proc. of SPIE Vol. 9152 91522B-2

LC]

Each TC3 module has a set of mandatory and optional attributes. The mandatory attributes of each TC3 module are:
description, state machine and a generic interface (ITComObject). The ITComObject interface is used to access basic
information and status of the module like name, object ID, parameters and state”.

TwinCAT Module
Module Description
State Machine
& ITComObject Interface
» Interfaces Parameter Interface L
& Pointers &
[®
g Data Areas Contexts Data Area S
; Point &
¢ Categories SRS v
#* %
ADS Port

Figure 3: Internal structure of a TC3 module (source: BECKHOFF website)

The module state machine, as showed in Figure 4,

describes the general state of the module. It controls the ' /“ 9
initialization, parameterization and the creation of the i ﬁ

. 3 . : .
connection to the other modules’.

The state and the transition of the C++ modules are .-‘??!'-'Pﬁl‘%’;'.lw ﬁ
consistent with the ones of EtherCAT. The only state h

taking place in the real-time context is the operational
state (OP).

Figure 4: TC3 module state machine (source: BECKHOFF
website)

There are two types of files to describe the modules:

e C(Class description files, *.tmc
e Instance description files, *.tmi

The class description contains the description of the module and its interface together with the general information of the

module: vendor information, class ID, etc. The instance description file contains the concrete settings of the module like
parameters, interface pointers, etc.

Proc. of SPIE Vol. 9152 91522B-3

C++ Code Generation

TC3 provides a code generator for implementing the interfaces of module classes such as type definitions, parameters,
data areas, etc. The generator is based on the TMC file which is produced by the TMC editor, a graphical application
embedded in TC3. Once data types, parameters and inputs and outputs of a module are defined through the graphical
editor, the code generation transforms them from TMC file to the C++ code, see Figure 5 and Figure 6.

Solution Explarer

Search Solution Explorer (Ctrl+;)

A

-
o-&a

@ &
P

b [MOTION -

b

1

4 [C++

b

4 [

SigGen

4 +[] SigGen Project

4

=0

b & External Depender
b & Header Files
4 &l Source Files
*++ SigGen.cpp
+0 SigGenrc
#++ SigGenClassFac
#++ TcPch.cpp
4 & TMCFiles
+ | SigGen.tmc
b & TwinCAT RT Files
b & TwinCAT UM Files
SigGen_Chjl (CSigGet
b Inputs
b @ Outputs

4 il sigGenSol_MeasurementProject
4+ Scope Project

Solution Explorer

-

@

Chart

-
e-&

Search Salution Explorer {Ctrl+)

+3] Solution 'SigGenSel' (2 projects)
4+ SigGenSol

4

4
b
4

@ svs
& Mo
B

TEM
TION

[l C++
4 [SigGen

P

£ SigGen Project
b & External Dependencies
4 &l Header Files
*B Excitationh
+B
+*B
*B
*B

Resource.h
SigGen.h

SigGenlnterfaces.h
+B SigGenServices.h
*B TcPchh

4 & Source Files
*+ SigGen.cpp
*[SigGen.rc

*++ SigGenClassFactory.cpp

*+ TcPch.cpp
4 &l TMCFiles
* | SigGen.tmc

C++ Debugging

LS SigGen.cpp® MAIN FB_StateMachine
-
4 (P t_excparams - @
p m ts Add, remove and reorder Sub Items.
Lg type
Ed -
d= 11 - G@A
:' Gﬁse‘? g Name _ Specification T Offset [Bits] Size [Bits] Unit
it
@ ampiu type Alias t_exctype 0 16
Lg frequency
ts Alias LREAL 16 64
Lg dutycycle
offset Alias LREAL 80 64
4 —o I35 ‘achine
4 %% Methods amplitud Alias LREAL 144 64
W@ Star frequency Alias LREAL 208 64
W Stop dutycycle Alias LREAL 272 64
M SetState
M GetState
4 'm Modules =
P g CSigGen

—9 Implemented Interfaces
I !! Parameters
A Data Areas
4 Inputs
Symbols
4 [Cutputs
- Symbols
[l Data Pointers
A :((Interface Pointers
— CyclicCaller
Pna Deployment E

ID : 596151051

e o »R

SigGenClassFactory.h

Titel : Grafik aus T\%CAT 3 Module Class (TMC) Editor (il&

Figure 5: TMC editor

S SicGen.tme [TMC Editor] SigGen.cpp* MAIN FBE_StateMachine

(Global Scope) =
///<AutoGeneratedContent id="DataTypes">
“#if !defined(TC_TYPE 1B1DASF4 89BA 4701 9CC7 DEC276173819 INCLUDED)
a #define TC TYPE 1B1DASF4 89BA 4701 9CC7 DEC276173819 INCLUDED
—lenum t_exctype : SHORT {
EXC_CONSTANT,
EXC_SQUAREWAVE ,
EXC_TRIANGLEWAVE,
EXC_SAWTOOTH,
EXC_SINEWAVE,
EXC_WHITEMNOISE,
EXC_PINKNOISE
IS
#endif // !defined(TC TYPE 1B1D45F4 89BA 4701 9CC7 DEC276173819 INCLUDED)

—#if ldefined(_TC_TYPE_1@AJ44EE3_9397_458A B937_9CD54D542325_INCLUDED)
#define _TC_TYPE_1@A4AEE3_0397_A58A BO37_0CD54D542325_INCLUDED_
#pragma pack(push,1)

—typedef struct _t_excparams

{

t_exctype type;
double ts;

double offset;
double amplitud;
double frequency;
double dutycycle;

} t_excparams, *Pt_excparams;
-4

100 %

-

Figure 6: Extract of a code generation.

Traditional debugging capabilities for C++ are supported in TC3. Additionally, TC3 provides a mechanism for
monitoring C++ variables at run-time and without stopping the normal execution of the modules. This facility is called

Proc. of SPIE Vol. 9152 91522B-4

LiveWatch and brings a new way of debugging and troubleshooting C++ code more similar to the tools provided within
the IEC61131-3 editor.

SVN Integration

VS can be extended through plug-ins. We have been using the AnkASVN plug-in which is an open source SVN client that
is supported and well integrated into V'S.

SIMULINK Integration

MathWorks enables the code generation from Simulink models to various targets through the Embedded Coder °. With
the Embedded Coder plus the TC3 Target for MatLab/Simulink (TE1400), supplementary software from BECKHOFF, it
is possible to generate C++ code encapsulated in a standard TC3 module format that can be instantiated or loaded into
the TC3 development environment.

In order to perform the code generation it is necessary to customize the coder settings before triggering the building
process within Simulink. The generation process delivers two outputs:

e (C++ code generated by the MathWorks Embedded Coder/TE1400 in the form of a VS C++ project. The
generated project contains all source code files, compiler and linker settings that are necessary to successfully
compile the module within TC3 environment.

e Binary (object file) produced by the MS VS C++ compiler.

Binaries can be added as TcCOM objects to the VS solution under the TC3 System. The inputs and outputs of the TC3
module are matching the ones in the Simulink model from where it was generated.

One of the most interesting capabilities of TC3 is the possibility to display and navigate through the Simulink block
diagram including the display of parameters and signals values that can be monitored and/or modified at run-time. The
user can adjust these parameters within the TC3 environment without to change the original model.

The TC3 block diagram keeps the same layout and model element names, see Figure 7 and Figure 8.

Enelloop -— TraTatd
WelTgtD ﬂ
w MO
AN > ND;I
EnFosLoop
FoszRef WelRef
Enakble Enable
L Enable Enable
i s Ref + Fef
FosTal UD Pos rkp : UD ¥ T = =
PosTgt ¥ ¥
‘ -"ir'ﬂ L e dRef 4'9 Wi=rn dRef W
FesTIE Fasition Welacity
— e Aot —e At
FosTatE Limits Limits
“timindup 2 “tiwindup .—
.'W hd - “UEIRETE ! TmTaIE
FosRefE Pozition VelRefE Walaciy TrqTgtE
Contraller = Contraller
Posnw\.v’i:
V& u v T
Antimindup Coupling

Figure 7: Extract of a simplified version of the ESTAC Simulink model.

Proc. of SPIE Vol. 9152 91522B-5

28888 o
e et
= L

Logical

gical
ETFUSLUUPFMSE Logical Operator!

Operator
e |
Pospef=0.1 pooFet “ElRef
— —
- L:l 0 Lo
3 gﬂn’osTgt— safs — Sufnd Sufhb
l? B = el Fuwd=0 T FAocfwd=] Sortoh
osTgtE= osition oty
Pos gtEE Limits] Limits]
- 1 Q%'i
PozFe IgOSREfE: Position welRefE "EIRefERD ety TrTEE T4t
Controller | Controller
Pozfu=0 st =
[’ el Aw=0
Aritiwindup Coupling
el fct=0

Figure 8: TC3 version of the original Simulink model.

2. TRACKING DEVICES

We have implemented a simple prototype of an instrument tracking device (derotator) with the aim of learning and
validating the C++ support within TC3. While doing this, we have reused the computation of the field rotation
compensation from the existing LCU code which has been used by several VLT instruments. The adaptation of the C
code was a fairly simple and straightforward process. The changes to be done were minor, mainly to convert the base
time between the two systems and the name of the trigonometric functions which have a different name under the TC3
environment.

As outlined in Figure 9, the tracking device prototype consists of two TC3 modules. One TC3 module doing the field
rotation computation (C++), and the other one doing the interaction with the motion controller through the Beckhoff NC
task (ST).

ibd [Block] Derotator Device Prototype [Derotator Device Prututypelj
R R R I i e i S o \

distributed Clocks Beckhoff NC Task

L6688 Process Image

 Input/Output rinput/Output | - Input/Output
C++ module
PTP Time Offset DC Time

¢ Input/Output -

Motor Status | Motor Control

1

|

|

|

|

|

|

|

|

Telescope Coordinates |
PLC module |
|

|

|

|

|

|

|

|

L} ||
field Rotation Computation

[7]

:Input/Output
=l g el

: Input/Cutput F1
- nput/Output derotator Contral Input/Output

-

: Input/Output

Lal
Field Rotation

|
|
|
|
|
|
|
|
|
|
| : Input/Output
|
|
|
|
|
|
|
L

Ll
Telescope Coordinates.

Figure 9: Derotator device architecture (prototype).

Proc. of SPIE Vol. 9152 91522B-6

2.1 C++ Module

The C++ module is executed cyclically in the context of an independent task. The PLC code gets the information from
the C++ module via the mapping of input/output variables. The C++ module obtains the UTC time required to compute
the field rotation based on the internal distributed clocks time and the external reference time (IEEE 1588). We have
used the interface of the system real-time task (ITcRTime) to inquire the distributed clocks time inside the C++ module:

m_spRTime->GetCurDcTime (GETCURDCTIME ACTUAL, &m Outputs.TaskDcTime);

The distributed clocks time is expressed in nanoseconds since January 1%, 2000. The maximum resolution is 100 ns.
We have implemented some C++ functions to do the conversion between UTC and distributed clock time, see Figure 10.

“HRESULT timeGetUTC(LONGLONG dcTime, vItTIMEVAL *v1tUTC)
HRESULT hr = S_OK;

// DC time is in nano seconds
vItUTC->tv_sec = (LONGLONG) (dcTime/1800000068) ;
v1tUTC->tv_usec = (dcTime - (v1tUTC->tv_sec * 1000000000))/1000;

= /[Added offset between year 1970 and 2000 needed by the different references
J/ used in UNIX and TWINCAT
v1tUTC->tv_sec += OFFSET_UNIX;
return hr;

}

—HRESULT timeGetDcTime(vI1tTIMEVAL v1tUTC, LONGLONG *dcTime)
{
HRESULT hr = S_OK;
LONGLONG val = ©;
val = vItUTC.tv_sec * 1000000000;
val -= OFFSET_UNIX;
*dcTime = val + v1tUTC.tv_usec * 1000;
return hr;

Figure 10: Time conversion functions using C++ in TC3 environment.

The input/output variables of the C++ module are described here:

Input:
e Structure containing the telescope pointing coordinates (ra, dec, posang, equinox).
e Structure containing the time reference coming from terminal IEEE1588.
e Distributed Clocks Time.

Output:
e Structure containingu the computation of the field rotation (altitude, azimuth, hour angle, parallactic angle,
pupil rotation, field rotation, etc.)

2.2 PLC Module
The PLC module consists of two Program Organization Units (POUs), the main program and the function block
FB TRACK CTRL. The FB TRACK CTRL implements a set of methods encapsulating the motion control

functionalities and the state machine handling (see Figure 11). The main program is just instantiating the
FB_ TRACK CTRL.

Proc. of SPIE Vol. 9152 91522B-7

Solution Explorer

FE_TRACK CTRL +® X

TcStopWatchSamplelnterfacesh

TimeFunctions.cpp Astro.cpp

,\
2
L]

™. Sl 1| FUNCTION BLOCK FE_TRACK_CTRL IMPLEMENTS ITrackCtrl NE
& e-2a@ & = z| VAR COWNSTANT 5|
Search Solution Explorer (Ctrl +;) P~ 3 C_POS_SPEED : LREAL := &;
4 C_MAX_SPEED : LREAL := 4;
4 [y POUs - 5 C¢_MIN SPEED : LREAL := 0.0005;
@¢ E_DIRECTION (ENUR) 3 C_NUM _AEIS : INT = 2;
9% E_MOTION_STATE (ENUR} 7| ERD_V
@¢ E_MOTION_TYPE (ENUM) Z VAR IHPUT
@, - —
? E_TRACKING MODE (ENUM) 10) stTrack AT %T*: stTrackingDataj
4 |5] FB_TRACK_CTRL (FB} 11| END_VAR
10} ActMove = 1z| VAR_OUTPUT
6} ActMoveVelocity 13 stastrocoord AT $0Q* : stAstroCoordinates; (4~ (OFC : I :Tracking Info) #)
14| EWD vaR
[0 ActPower o 15| wam
104 ActReset 16 Axisl : AXIS REF; (* axis reference data structure #)
[ComputeNextPos 17| state: E_MOTION_STATE; (* state machine state *)
i Enablesxis 18 AxisList: ARRAY [0..C_NUM_AXIZ] OF T AXTIR ACTION; M
[l FB_init =
By Getaisindex 1| (* update the axis status at the begimning of each cyele *) a
o 2 Awisl.Read8tatus();
[Homing 3 ptMovePaos := ADR (AxisList[indexaxis].MovePos);
[MowvelnPos 1 ptMoveOut := ADR(AxisList[indexixis].MoveOut);
[MowvelnSpeed 5 ptMoveVel := ADR (AxisList[indexaxis].MoveVel);
[NextMove 3 ptMoveoutVel := ADR(AxisList[indexAxis].MoveCutVel);
“ = 7
-'E’RESELAX‘S B {+ move axis using a state machine *)
4 Stop 9 CASE state OF
P =0 [TrackCtrl = 10 B
(8] MAIN (PRG)
23 T_AXIS_ACTION (STRUCT) Output >~ 1 x
@¢ T_MOTICN (STRUCT) -

Cles bk Frcom Towdn™ AT - X*= aum

Error List Qutput

Figure 11: PLC module prototype implementation.

Solution Explorer | Resource Yiew

Input:
e Telescope pointing coordinates (ra, dec, posang, equinox) received from the high-level software via OPC UA®.
e NC Structure with the motor status.
e Field rotation information received from the C++ module via the input and output variables.

Output: p
e Updated motor position/velocity.
e Telescope coordinates. This is required since C++ modules do not support direct interface to OPC UA.

2.3 Evaluation

The implementation of the prototype of the tracking device has been the first attempt to use the C++ language to
implement software artifacts under the PLC platform at ESO. After the familiarization with the technology, it was rather
simple to implement and adapt existing pieces of the VLT code to the new environment.

The required correction frequency of the existing derotator devices running on the LCU platform is at maximum 10 Hz.
The limiting factor is just the requirement and not the capabilities of the LCU. The achieved correction frequency of
prototype running on the PLC was 1 kHz (on a CX2030) given by the PLC cycle time. At each cycle, the PLC part of the
prototype is computing a new set point using the information obtained from the C++ part. The computation (in C++) to
fill up the field rotation structure took less than 50 microseconds. The overall CPU load of the PLC running the
prototype of the tracking device was very low (2-3%).

3. ESO STANDARD AXIS CONTROLLER (ESTAC)

ESTAC is the new standard controller for the control of the main axes of the auxiliary and unit telescopes in Paranal®. It
has a model based design implemented using MathWorks Simulink. Our goal was to validate the feasibility of
integrating this ESO product on the new PLC based development environment and use it to control the telescope
simulator and some DC motors. In order to achieve our goal, we have built a prototype application combining three TC3
modules:

e ESTAC (Simulink module): a simplified version of the ESTAC model which has been reduced to include only
the controller part, see Figure 7.

Proc. of SPIE Vol. 9152 91522B-8

e Signal Generator (C++ module): a set of C++ routines reused from the ESTAC development which produce
test signals that can be injected in the controller in order to carry out performance measurements".
e PLC module: a component doing the gluing of all TC3 modules and the interaction with the hardware.

3.1 Evaluation

We have successfully deployed the ESTAC application on a BECKHOFF Embedded PC. We have tested it by
controlling the telescope simulator, an existing mockup based on NI hardware that is used to test ESTAC for telescope
main axes in the VLT control model. Additionally, we have used ESTAC to control, in position and velocity, two
different DC motors using the DC controller EL7341 and the encoder interface EL5101-0010. In both cases the CPU

load remained below 10% running at cycle time of 1 ms.

Figure 12: Laboratory setup for the integration of ESTAC on a BECKHOFF PLC.

There is a tight integration between TC3 and Simulink, the TC3 target for the MathWorks Embedded Coder includes
makefiles and build scripts that together with VS compiler/linker produce a TC3 object file directly from the Simulink

block diagram, without manual intervention.

In TC3 is possible to navigate through the different levels of the Simulink model which are presented hierarchically in a
tree view together with the block diagram (see Figure 14). The values of the model parameters and the internal signals

can be accessed and modified at run-time.

The TC3 module general information can be also accessed from the list of properties of the model.

4 : Block.identification |
Identifier
Mame
Fath
Type
> DataArea: Input
© DataArea: ModelParameters
> DataArea: Output
> Internal signals
“ Module identification
¢ ModuleBuildinfo
“ Modulelnfo
BuildTimeStamp
Classld
+ CoderVersion
+ MatlabVersion
* ModelCheckSum
¢ Simulink¥ersion
* TcTargetlicenseld
+ TcTargetWersion
4 TwinCatVersion

<Root>
ESTACreduced]
ESTACreduced]
roat

{Debug=FALSE} {Debug=TRIUEN
{Classld={AA9813C4-1207-403E-B102-EC:
542014 10:04 AM (UT)
fAAQET3C4-1267-403E-B102-EC4BG6ELD:
{8:5:0: 04

{8:2:0:01

{4167953199; 3111493429; 3609619740; 0}
{8:2:0:01
{73CH1EBD-104A-4EER-955D-ADESGASTE
{11108 03

{3:1;4010; 0%

Figure 13: TC3 Simulink module properties.

Proc. of SPIE Vol. 9152 91522B-9

During the integration we faced some difficulties bringing the TC3 into run mode. The system simply remained in config
mode and no error was reported. Later on we discovered that the problem was due to a wrong configuration of the
parameters of the task calling the TC3 Simulink module. These parameters (task priority, step size, etc.) should match
the ones defined in the MathWorks coder Tc advanced configuration.

Model Hierarchical Model
Inputs/Outputs tree view Online values parameters
‘t
Solutich Explorer ~ I x SlgGen pp Scope Project* MAIN [Online] FB_StateMachine.FB_init [Online] SigGenServices.h SigGenClassFactory.cpp 5
. 6o 7 T
@ o-o @ Jr (init | Parameter (Online) | Data Area | Interfaces | Biqck Diagram |
SoE (—— v Togar "
SearcH] Solution Explorer (Ctrl- P ~ Logical Operatort 24 O]
And Operator identificati N
&1 Splution 'SigGenSol' (2 projec & i Antiwindup Coupl Em;‘,’““““?;l's?
4+l sigGensol "EnPosLoop Name ESTACreduced?
o @l SYSTEM Path ESTACreduced2
) EnVelLoop SRet=]
¥ License Logical Operator 9g FOSRef VeRet Efle o I““:‘DI‘
b @ Real-Time Logical Operator” L Empm““'mep ';ALSE[FALSE;
4 fi Tasks §°5!“°”C . EnsSoftTacha TRUE (TRUE)
[PicTask T °i"“"” oniol L] EnVelloop FALSE (TRUE)
[CTask 'AC., d Sufng 0(1463733) [v]
niAncup VelFyd= AcdFwdf0 Woutp
[EstacTask Constant on 90000 Velocity) PR
i Routes Constantl ts Limits LREAL
Constant2 Erpotie: 3
Constant3 il osRefE= Y Vell%lE VelRefEF0 —_ d
4 @ Objectl (ESTAC Constantd e“f; Position Velocity repared -14637.33
4 @ Input - dRef Controller Controlier rline value: 1465036
Enable PosAw=0 036 L] VelRef=-100
& PosTgt Kaw St
Pos Kd 0.036] Add this signal to the TwinCAT Measurem: Lo e 1"
vel - Aniwindup Couping ST DataAren: ModelParofieters
EnSoftTz E‘ AWCK 0.01(0.01
EnPosLor ot AWCN 30)
& EnVellLoc - 0ld antiwindup Egzm\fvx *]JSJJ;("
VelTgt0 0ld derivative POSKD
TraTgt0 et POSKF
ntegral
PosTgtE Ref POSKI
PosRefE sum POSKP
g o POSMAX 283 (6.283)
¥ VelTgtE s POSMIN /6283(6283)
' VelRefE Suma POSND 5(5)
Vel POSVMAX / 0026 (0.026)
TrqTgte z“’“g s Velocity ™ gyicha > TRQAT [0:0:0: 0} ({0: 0:0;C
' TrqRefE 5527 » TRQAZ {0:0:0: 0} ({0: 0:0:C
4 m Output o A | |+ TRaBo T E L
% TrgRef . s q » Pos
& VelRef 7 p (
[PreparddValue]Use the drop down

7| | Online
Solution Explorer Resource View

Figure 14: ESTAC Simulink model running in TC3 real-time environment.

> 1 x SigGencpp ¥ ScupePruJem‘ B MAIN [Online]

Solution Explorer FB_StateMachine.FB_init [Online] SigGenServicesh SigGenClassFactory.cop b
m '@ =4 E——‘I @ ” Chart a4
Start. 7:49:49 PM.879 |End: 757-13 PM.029 | Pos: 0.00:07:13.068 | Time: 7:57.02 PM.947 | Date: Monday, May 12, 2014
SeahiSolion b Cig Ol 10| 0.00:00:10.000 0.00:07:13.065 o Ok X R
® DeuCtri 100+ = >
b @ InfoData / /
4§ Term1(EKL \ / \ /
b Term 2 (I a1l / \ /
4 [Term3(\\ / \\
4 [3ENCY \ / \
b # st 60 i / \ /
P \ \
8L \ \ /
b ENC 40 Y / \ /
b @ West \ \ /
b @ Infol \ \ /
b § Tema(20) J \ |
> % Tem s (/ /
P " Term6 (I / /
b W Term 7 (EKL 04 : / y /
4 3% Mappings \ / \ /
%, SigGen_Obj1 (C \ | \
7 SigGenPlc Insta -204 \ f \]
% SigGenPlc Insta | \
4 SigGen_Obj1 (C \ / \ I
%A Objectl (ESTAC =y Y f 1]
4 il sigGenSol_Measurementr \ / \ /
4+ Scope Project \ / \ f
4 5 Chart 604] f
) \ / \ |
4 fo Axs | f | /
HT Objectl (ES s0] \ / /
11, Cursor \] /
1 Trigger \ / /
- \ / \ /
< » -1004 : - - = - - - : = - :
Soltion Explorer eV 0.000s 1.000s 2.000s 3.000s 4.000s 5.000s 6.000s 7.000s 8.000s 9.000s 10.000s

Figure 15: Direct plotting of Simulink model signals.

Proc. of SPIE Vol. 9152 91522B-10

These tests demonstrated the versatility and the potential of integrating C++ and Simulink application into the TC3
environment. The direct benefits are:

e Re-use of existing and previously tested software components. Some minor modifications are required to adapt
the code to the new platform though.

o Simplification of the development by using a well known programming language in our environment. Most of
our software engineers are experienced C/C++ developers.

e Implementation of more advanced applications requiring higher order of performance.

The suggested architecture for applications combining PLC and C++ code is to encapsulate the interaction between the
hardware and the high-level software within the PLC part, and the computation of intensive tasks or complex algorithms
within the C++ part. Nevertheless, in the scope of instrument control and in order to keep it simple and to avoid
additional licenses, we intend to use C++ and Simulink only for those cases where this is justified, e.g. for the
computation of field rotation for tracking devices.

4. CONCLUSIONS

With the latest version of TwinCAT it is possible to develop PLC code not only with the traditional standard languages
specified in IEC61131-3, but also in C/C++ and Matlab/Simulik. This is a major advantage that opens the door to
implementing more advanced applications with a higher level of computational complexity, beyond what is covered by
traditional PLCs. Our laboratory tests of the new TC3 functionalities demonstrated the feasibility of reusing existing
VLT software code implemented in C++. This will certainly ease the implementation of instrument control software for
this new development platform.

The feasibility of integrating Simulink models running in the PLC and without any modification was also verified
confirming the expansion of the possibilities for this development platform not only for using specialized controllers like
ESTAC but also for implementing simulation capabilities.

REFERENCES

[1] Kiekebusch, M., Lucuix, C., Erm, T., Chiozzi, G., Zamparelli, M., Kern, L., Brast, R., Pirani, W., Reiss, R.,
Popovic, D., Knudstrup, J., Duchateau, M., Sandrock, S., Di Lieto, N., “PC based PLCs and Ethernet based
fieldbus: the new standard platform for future VLT instrument control”, Proc. SPIE 9152 (2014)

[2] Sandrock, S., Di Lieto, N.,Pettazzi, L., Erm, T., “Design and implementation of a general main axis controller
for the ESO telescopes”, Proc. SPIE 8451 (2012).

[3] http://www.beckhoff.de

[4] Di Lieto, N., "Standard Telescope Axes Controller, Control Algorithm Specification", ESO internal document,
(2011)

[5] http://www.mathworks.de/

[6] http://www.opcfoundation.org

Proc. of SPIE Vol. 9152 91522B-11

	SPIE Proceedings
	MAIN MENU
	Contents
	Search
	Close

