

MathWorks Simulink and C++ integration with the new VLT PLC-
based standard development platform for instrument control systems

Mario J. Kiekebusch 1a, Nicola Di Lieto a, Stefan Sandrock a, Dan Popovic a, Gianluca Chiozzi a

aEuropean Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München.

ABSTRACT

ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems
(new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have
evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of
BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks
Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested
solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal
capabilities of the traditional PLC programming environments.

We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for
instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based
controller implemented in Simulink and used for the control of telescope main axes.

Keywords: VLT, Instrument Control, PLC, C++, Simulink, TwinCAT

1. TECHNOLOGY OVERVIEW

BECKHOFF Embedded PCs and EtherCAT is the proposed solution as the new development platform for VLT
instrument control systems1. This solution includes TwinCAT (TC) software which is the implementation of the
EtherCAT master that provides deterministic cyclic access to field inputs and outputs as well as to variables in the
traditional IEC 61131-3 languages. The TwinCAT version 3 (TC3) launched in 2010 has been a major upgrade which
includes the eXtended Automation Technlogy (XAT) expanding its capabilities with many new powerful functions3.
Among those new features is the support for high-level languages such as C/C++ and Simulink for real-time
applications.

C++ Development Environment

Starting from TC3, the BECKHOFF software is integrated in the Microsoft Visual Studio (VS) Integrated Development
Environment (IDE). All TC3 components are encapsulated in a so-called “solution”. Developers can implement PLC and
C++ code within the same IDE. Templates are provided to create the various types of projects and files, Figure 1 shows
the default directory structure generated when selecting a C++ driver project.

Additional Licenses

The free version of the VS shell that is integrated with the TC3 installation package cannot be used for developing C++
code. The Professional Edition of VS is required in order to be able to compile C++ code for TC3. All our tests were
performed using VS Professional 2012. There is also a specific run-time license required for the execution of software
developed in C++.

1 mkiekebu@eso.org; phone +49 89 32006-0; fax: +49 89 320 2362.

Software and Cyberinfrastructure for Astronomy III, edited by Gianluca Chiozzi, Nicole M. Radziwill,
Proc. of SPIE Vol. 9152, 91522B · © 2014 SPIE · CCC code: 0277-786X/14/$18

doi: 10.1117/12.2056381

Proc. of SPIE Vol. 9152 91522B-1

Solution Explorer « « « « « « « «: - X

Search Solution Explorer (Ctrl +;) f
+Co7 Solution 'SigGenSol. (2 projects)

+J SigGenSol

D SYSTEM

D ® MOTION

D E PLC
®C ++

® SigGen

+t(SigGen Project
D e External Depender

D f! Header Files

ál Source Files

* *+ SigGen.cpp

+ SigGen.rc

* ** SigGenClassFac

'+ TcPch.cpp
ßi1 TMC Files

SigGen.tmc

D TwinCAT RT Files

D 11 TwinCAT UM Files

® SigGen_Obj1(CSigGer

D 17, Inputs

D in Outputs
D I/O

SigGen.tmc [TMC Editor] SigGen.cpp* -o x MAIN FB_StateMachine

4 CSigGen - ® CycleUpdate(ITcTask * ipTask, ITcUnknown * ipCaller, ULONG_PTR context)

Q

100 %

///<AutoGeneratedContent

HRESULT

{

}

id="ImplementationOf_ITcCyclic"> ..

CSigGen::CycleUpdate(ITcTask* ipTask, ITcUnknown* ipCaller, ULONG_PTR context)

HRESULT hr = S_OK;

m_counter+=m_Inputs.Va lue ;

m_Outputs.Value=m_counter;

if (!m_bRun)

return hr;

excitation _update(&m_excitationData);

excitation _output(&m_excitationData, &m_Outputs.SignalOutputReal);

m_Outputs.SignalOutputUlnt = (UINT32)m_Outputs.SignalOutputReal;

switch (m_State)

{

case 1:

m_counter + +;

break;

case 2:

m_counter --;

break;

}
return hr;

ITC Configuration 1 Debugging

TwinCAT Object Manager

2 PLC
o
V

Task

Call

C ++o
Module

2 NC
o

Call

Simulink`='

2 C ++o
vv Module

2C
8 Module

Task o
Module

f-

Call

2 CNC
ov

2 Simulinkm
o

Module
F-

2 PLC
ovTask

2 Safety
Q

FBD
VH

Call

TwinCAT 3 runtime

2 Safetyov

TwinCAT Automation Device Driver - ADD

Figure 1: MS Visual Studio solution explorer and C++ editor.

TC3 has a modular architecture. All the real-time components are encapsulated in modules which are managed by the
run-time system. TC3 uses the concepts from “Component Object Model (COM)” to define the characteristics and
behavior of the modules. TwinCAT COM (TcCOM) is the adaptation of COM to the automation technology that allows
modules implemented in different languages to interact seamlessly in the real-time context, see Figure 2.

Figure 2: Modular TC3 run-time (source: BECKHOFF website)

Proc. of SPIE Vol. 9152 91522B-2

TwinCAT Module

Module Description

State Machine

- ITComObject Interface

Interfaces Parameter Interface -
- Pointers -

0 , ..

.., Data Areas Contexts Data Area ,-

Categories
Pointers ,.

ADS Port

0-
0-

Each TC3 module has a set of mandatory and optional attributes. The mandatory attributes of each TC3 module are:
description, state machine and a generic interface (ITComObject). The ITComObject interface is used to access basic
information and status of the module like name, object ID, parameters and state3.

Figure 3: Internal structure of a TC3 module (source: BECKHOFF website)

The module state machine, as showed in Figure 4,
describes the general state of the module. It controls the
initialization, parameterization and the creation of the
connection to the other modules3.

The state and the transition of the C++ modules are
consistent with the ones of EtherCAT. The only state
taking place in the real-time context is the operational
state (OP).

Figure 4: TC3 module state machine (source: BECKHOFF
website)

There are two types of files to describe the modules:

• Class description files, *.tmc
• Instance description files, *.tmi

The class description contains the description of the module and its interface together with the general information of the
module: vendor information, class ID, etc. The instance description file contains the concrete settings of the module like
parameters, interface pointers, etc.

Proc. of SPIE Vol. 9152 91522B-3

Solution Explorer - 4 X
liI 19 - P? <>

Search Solution Explorer (Ctrl +;) P -
M Solution 'SigGenSol' (2 projects)

SigGenSol

D al SYSTEM

D ® MOTION

D PLC

®C ++

(j SigGen

.c ti SigGen Project
D ç External Dependencies

A Header Files

+o Excitation.h
+o Resource.h

+o SigGen.h

+o SigGenClassFactory.h

+o SigGenlnterfaces.h

+o SigGenServices.h

+ TcPch.h

fil Source Files

+ ++ SigGen.cpp

+ 11 SigGen.rc

* ++ SigGenClassFactory.cpp

++ TcPch.cpp

a TMC Files

, SigGen.tmc

A

SigGenSeivices.h x SigGen.tmc [TMC Editor] SigGen.cpp* MAIN FB_StateMachine

(Global Scope) -1

///<AutoGeneratedContent id="DataTypes">

H#if !defined(_TC_TYPE_1B1D45F4_89BA_4701_9CC7_DEC276173819_INCLUDED_)

#define _TC_TYPE_1B1D45F4_89BA_4701_9CC7_DEC276173819_INCLUDED_

Benum t_exctype : SHORT {

EXC_CONSTANT,

EXC_SQUAREWAVE,

EXC_TRIANGLEWAVE,

EXC_SAWTOOTH,

EXC_SINEWAVE,

EXC_WHITENOISE,

EXC_PINKNOISE

};

#endif // !defined(_TC_TYPE_1B1D45F4_89BA_4701_9CC7_DEC276173819_INCLUDED_)

B#if !defined(_TC_TYPE_10A44EE3_9397 458A_B937_9CD54D542325_INCLUDED_)

#define _TC_TYPE_10A44EE3_9397_458A_B937_9CD54D542325_INCLUDED_

#pragma pack(push,1)

Htypedef struct _t_excparams
{

t_exctype type;

double ts;

double offset;

double amplitud;

double frequency;

double dutycycle;

} t_excparams, *Pt_excparams;

100 % - 4

Solution Explorer ¢ X

To-e0,0 .'
Search Solution Explorer (Ctrl +;) p -

D ® MOTION
D PLC

® SigGen
+V SigGen Project

D p External Depender
D 11 Header Files

l Source Files

SigGen.cpp
+ 1 SigGen.rc

SigGenClassFac

+ TcPch.cpp
r.+1 TMC Files

SigGen.tmc

D I TwinCAT RT Files
D I TwinCAT UM Files
® SigGen_Obj1(CSigGer

D Inputs

D SI Outputs

D ®I /O
+® SigGenSol_MeasurementProject:

4 I Scope Project

4 i Chart

SigGen.tmc [TMC Editor] X

t_excparams

SigGen.cpp* MAIN FB_StateMachine

MOE
b type
14 t
Li, offset
Le amplitud
Le frequency

lq dutycycle
-o IStateMachine

Methods

,r Start
(0 Stop

SetState

GetState

4 IV Modules
® CSigGen

Implemented Interfaces

Parameters

a Data Areas

a Inputs

Symbols

Outputs

RA Symbols
la Data Pointers

Interface Pointers

c CyclicCaller

ro Deployment

tI Add, remove and reorder Sub Items.

- 1 8 Byte ®]
Name Specification Type Offset [Bits] Size [Bits] Unit

type Alias t_exctype 0 16

is Alias LREAL 16 64

offset Alias LREAL 80 64

amplitud Alias LREAL 144 64

frequency Alias LREAL 208 64

dutycycle Alias LREAL 272 64

Titel : Grafik aus TwinCAT 3 Module Class (TMC) Editor (i16,

ID: 596151051

C++ Code Generation

TC3 provides a code generator for implementing the interfaces of module classes such as type definitions, parameters,
data areas, etc. The generator is based on the TMC file which is produced by the TMC editor, a graphical application
embedded in TC3. Once data types, parameters and inputs and outputs of a module are defined through the graphical
editor, the code generation transforms them from TMC file to the C++ code, see Figure 5 and Figure 6.

Figure 5: TMC editor

Figure 6: Extract of a code generation.

C++ Debugging

Traditional debugging capabilities for C++ are supported in TC3. Additionally, TC3 provides a mechanism for
monitoring C++ variables at run-time and without stopping the normal execution of the modules. This facility is called

Proc. of SPIE Vol. 9152 91522B-4

EnF'oz Loop

PCaTpI

NC.

Pc!TpIE

VeITgb7

NOT

Enable
u y P

y0
.0 dy Velr.a

Position
Limit

CM> Pc5PL1E
F'osRefE

C3)
F'0sF:et

Enable

Ref

dRef y

Pct

Tb

- 4tiwindup
WITb1E

Position UeITgiE
Controller

(1)-
TrgTgtO

111--w

Enable
u

y0
"0 dy

Ve1P21

Ni I

=o1
VelRef

Accra

Velocity
Limit

vet Pere
VeIRefE

Enable

f Ref

dRef

- Pct

HV U1

Antiwindup Coupling

rniwindup

Velocity
Controller

I, \ Tit TO It

QTry TO IE

TrgTgtE

LiveWatch and brings a new way of debugging and troubleshooting C++ code more similar to the tools provided within
the IEC61131-3 editor.

SVN Integration

VS can be extended through plug-ins. We have been using the AnkhSVN plug-in which is an open source SVN client that
is supported and well integrated into VS.

SIMULINK Integration

MathWorks enables the code generation from Simulink models to various targets through the Embedded Coder 5. With
the Embedded Coder plus the TC3 Target for MatLab/Simulink (TE1400), supplementary software from BECKHOFF, it
is possible to generate C++ code encapsulated in a standard TC3 module format that can be instantiated or loaded into
the TC3 development environment.

In order to perform the code generation it is necessary to customize the coder settings before triggering the building
process within Simulink. The generation process delivers two outputs:

• C++ code generated by the MathWorks Embedded Coder/TE1400 in the form of a VS C++ project. The
generated project contains all source code files, compiler and linker settings that are necessary to successfully
compile the module within TC3 environment.

• Binary (object file) produced by the MS VS C++ compiler.

Binaries can be added as TcCOM objects to the VS solution under the TC3 System. The inputs and outputs of the TC3
module are matching the ones in the Simulink model from where it was generated.

One of the most interesting capabilities of TC3 is the possibility to display and navigate through the Simulink block
diagram including the display of parameters and signals values that can be monitored and/or modified at run-time. The
user can adjust these parameters within the TC3 environment without to change the original model.

The TC3 block diagram keeps the same layout and model element names, see Figure 7 and Figure 8.

Figure 7: Extract of a simplified version of the ESTAC Simulink model.

Proc. of SPIE Vol. 9152 91522B-5

ibd [Bock] Derotator Device Prototype [Derotator Device Prototype Y

eL6688 Process Image

a
Input/Output

VPTP Time Offset

: Input/Output

distributed Clocks

V
DC Time

field Rotation Computation

C.. module

Telescope Coordinates

: Input/Output

: Input/Output

Beckhoff NC Task

n
Input/Output :InpuUOutput

V
Motor Status Motor Control

: Input/Output

PLC

PLC module

: Input/Output derotator Control : Input/Output

U Input/Output
Field Rotation

: OPC UA

highLevel SW : OPC UA

Telescope Coordinates

En'vél

En Pos LoopFALS E

'osgosTgt=

PoTgtogosTgt E=

u

AL

Logical
Operator

Pos Ref = -0.1 pos Réf

Suma

Position
Limits

V41Fwc =D

POSReIpsRefE=

...c§u ñ

Switch

Position VklTgt L1'.11-13 -13

Controller

PosAo =D

Ze

Sumo

TJIO

Logical
Operator!

{

'kI F:et

Ace wd=
\,@loody
Limits

VélRef E VelRefE =D

Suint VelRQf

I

0

Antiwindup Coupling

Tna...

. !¢ch1

\Mocity Trq gt r9Tgt

Controller

V41Pct=0

\,41Aw=0

Figure 8: TC3 version of the original Simulink model.

2. TRACKING DEVICES

We have implemented a simple prototype of an instrument tracking device (derotator) with the aim of learning and
validating the C++ support within TC3. While doing this, we have reused the computation of the field rotation
compensation from the existing LCU code which has been used by several VLT instruments. The adaptation of the C
code was a fairly simple and straightforward process. The changes to be done were minor, mainly to convert the base
time between the two systems and the name of the trigonometric functions which have a different name under the TC3
environment.

As outlined in Figure 9, the tracking device prototype consists of two TC3 modules. One TC3 module doing the field
rotation computation (C++), and the other one doing the interaction with the motion controller through the Beckhoff NC
task (ST).

Figure 9: Derotator device architecture (prototype).

Proc. of SPIE Vol. 9152 91522B-6

-HRESULT timeGetUTC(LONGLONG dcTime, v1tTIMEVAL *v1tUTC)

{

HRESULT hr = S_OK;

// DC time is in nano seconds

v1tUTC- >tv_sec = (LONGLONG)(dcTime /1000000000);

vltUTC- >tv_usec = (dcTime - (v1tUTC- >tv_sec * 1000000000))/1000;

p // Added offset between year 1970 and 2000 needed by the different references

// used in UNIX and TWINCAT

v1tUTC- >tv_sec += OFFSET_UNIX;

return hr;

}

ü HRESULT timeGetDcTime(v1tTIMEVAL vltUTC, LONGLONG *dcTime)

{

HRESULT hr = S_OK;

LONGLONG val = 0;

val = v1tUTC.tv_sec * 1000000000;

val -= OFFSET_UNIX;

*dcTime = val + v1tUTC.tv_usec * 1000;

return hr;

}

2.1 C++ Module

The C++ module is executed cyclically in the context of an independent task. The PLC code gets the information from
the C++ module via the mapping of input/output variables. The C++ module obtains the UTC time required to compute
the field rotation based on the internal distributed clocks time and the external reference time (IEEE 1588). We have
used the interface of the system real-time task (ITcRTime) to inquire the distributed clocks time inside the C++ module:

m_spRTime->GetCurDcTime(GETCURDCTIME_ACTUAL, &m_Outputs.TaskDcTime);

The distributed clocks time is expressed in nanoseconds since January 1st , 2000. The maximum resolution is 100 ns.
We have implemented some C++ functions to do the conversion between UTC and distributed clock time, see Figure 10.

Figure 10: Time conversion functions using C++ in TC3 environment.

The input/output variables of the C++ module are described here:

Input:

• Structure containing the telescope pointing coordinates (ra, dec, posang, equinox).
• Structure containing the time reference coming from terminal IEEE1588.
• Distributed Clocks Time.

Output:

• Structure containingµ the computation of the field rotation (altitude, azimuth, hour angle, parallactic angle,
pupil rotation, field rotation, etc.)

2.2 PLC Module

The PLC module consists of two Program Organization Units (POUs), the main program and the function block
FB_TRACK_CTRL. The FB_TRACK_CTRL implements a set of methods encapsulating the motion control
functionalities and the state machine handling (see Figure 11). The main program is just instantiating the
FB_TRACK_CTRL.

Proc. of SPIE Vol. 9152 91522B-7

Solution Explorer .n

0065Ib-4,61%1IfF
- 4 x

Search Solution Explorer (Ctrl +;) y
a POUs

eQ E_DIRECTION (ENUM)

EMOTION STATE (ENUM)

eQ E_MOTION TYPE (ENUM)

°Q E TRACKING_MODE (ENUM)

FB TRACK_CTRL (FB)'
itya ActM ove

ß ActMoveVeloci w
ß ActPower

ActReset

ß ComputeNextPos

EnableAxis

ß FBinit
ß GetAxisindex
ß Homing
ß MovelnPos
ß MovelnSpeed

ß NextM ove

ß ResetAxis

Si Stop

D .o ITrackCtrl
El MAIN (PRG)

T_AXIS_ACTION (STRUCT)

eQ T_MOTION (STRUCT)

Solution Explorer Resource View

FB TRACK_CTRL a x TcStop W atchSampl elnterfaces.h TimeFUnctions.cpp Astro.cpp

VAR CONSTANT

= 6;

= 4;

CyMIN_SPEED . LREAL .= 0.0005;
CyNUMpAXIS . INT .= 2;

ITCackCtcl

VAR INPUT
stErack AT %I *: atTCackingData;

VAR OUTPUT
stAstreCoord AT %p* : stAstroCoordinates; (*. (OPC 1 :Tracking Info) ^)

VAR

xiel (^ axis reference data e rnctnre ^)
state: (^ state machine stt
AxisL s Y [0.0 NUM AXIS] OF T AXIS ACTION;

(= update the axis acne at the beginning of each cycle :)
Axisl.ReadStatuSO;

:= os)¡

:= ADR(AxiSLiet[indexAxis].M veVel)¡
:= AAR sl.:¡ ¡

ptmoveontVel := AUR(AxiaLiat[End exAxie].MoveOutVel);

(= move eXAS using a state machine +)
CASE state OF

Erro Usti outpur
_Ilr Iwwlrla.

Figure 11: PLC module prototype implementation.

Input:

• Telescope pointing coordinates (ra, dec, posang, equinox) received from the high-level software via OPC UA6.
• NC Structure with the motor status.
• Field rotation information received from the C++ module via the input and output variables.

Output: µ

• Updated motor position/velocity.
• Telescope coordinates. This is required since C++ modules do not support direct interface to OPC UA.

2.3 Evaluation

The implementation of the prototype of the tracking device has been the first attempt to use the C++ language to
implement software artifacts under the PLC platform at ESO. After the familiarization with the technology, it was rather
simple to implement and adapt existing pieces of the VLT code to the new environment.

The required correction frequency of the existing derotator devices running on the LCU platform is at maximum 10 Hz.
The limiting factor is just the requirement and not the capabilities of the LCU. The achieved correction frequency of
prototype running on the PLC was 1 kHz (on a CX2030) given by the PLC cycle time. At each cycle, the PLC part of the
prototype is computing a new set point using the information obtained from the C++ part. The computation (in C++) to
fill up the field rotation structure took less than 50 microseconds. The overall CPU load of the PLC running the
prototype of the tracking device was very low (2-3%).

3. ESO STANDARD AXIS CONTROLLER (ESTAC)
ESTAC is the new standard controller for the control of the main axes of the auxiliary and unit telescopes in Paranal2. It
has a model based design implemented using MathWorks Simulink. Our goal was to validate the feasibility of
integrating this ESO product on the new PLC based development environment and use it to control the telescope
simulator and some DC motors. In order to achieve our goal, we have built a prototype application combining three TC3
modules:

• ESTAC (Simulink module): a simplified version of the ESTAC model which has been reduced to include only
the controller part, see Figure 7.

Proc. of SPIE Vol. 9152 91522B-8

. 11.o ck..i dentif ication..
Identifier
Name
Path
Type

b DataArea: Input
DataArea: ModelParameters
Data Area: Output
Internal signals
Module identification
ModuleBuildlnfo
ModuleInfo

BuildTimeStamp
ClassId
CoderVersion
MatlabVersion
ModelCheckSum
SimulinkVersion
TcTargetLicenseld
TcTargetVersion
TwinCatVersion

<Root>

ESTACreduced3
ESTACreduced3
root

{Debug=FALSE} [{Debug=TRUE}]
{ClassId={AA9813C4-1267-403E-B102-EC
5/14/201410:04 AM (UT)
{AA9 813 C4-12 6 7-4 0 3 E-B 10 2-E C4 B 8 6 E 6 Bf

{8; 5; 0; 0}

{8; 2; 0; 0}

{4167953199;3111493429;3609819740;0}
{8; 2; 0; 0}

{73C71 EBD-104A-4EE6-955D-ADE86A37E
{1; 1; 1109; 0}

{3; 1; 4010; 0}

i

• Signal Generator (C++ module): a set of C++ routines reused from the ESTAC development which produce
test signals that can be injected in the controller in order to carry out performance measurements4.

• PLC module: a component doing the gluing of all TC3 modules and the interaction with the hardware.

3.1 Evaluation

We have successfully deployed the ESTAC application on a BECKHOFF Embedded PC. We have tested it by
controlling the telescope simulator, an existing mockup based on NI hardware that is used to test ESTAC for telescope
main axes in the VLT control model. Additionally, we have used ESTAC to control, in position and velocity, two
different DC motors using the DC controller EL7341 and the encoder interface EL5101-0010. In both cases the CPU
load remained below 10% running at cycle time of 1 ms.

Figure 12: Laboratory setup for the integration of ESTAC on a BECKHOFF PLC.

There is a tight integration between TC3 and Simulink, the TC3 target for the MathWorks Embedded Coder includes
makefiles and build scripts that together with VS compiler/linker produce a TC3 object file directly from the Simulink
block diagram, without manual intervention.

In TC3 is possible to navigate through the different levels of the Simulink model which are presented hierarchically in a
tree view together with the block diagram (see Figure 14). The values of the model parameters and the internal signals
can be accessed and modified at run-time.

The TC3 module general information can be also accessed from the list of properties of the model.

Figure 13: TC3 Simulink module properties.

Proc. of SPIE Vol. 9152 91522B-9

Solution Explorer 9 4 X
-agi.®i'

Search Solution Explorer (CIA P -
oe.-Cm

D InfoData

0 Term 1(EKl
D Term 2(I

A Term 3 (I

Qt ENC'

A St
P Cr
4 L.

D ENO

D WcSt

D InfoC

D II Term 4 (I

D 7 Term 5 (I

D 7. Term 6 (I

D Term] (EKl

rt Mappings
it Sig6en_Ob61(C
ff Sig6enPlc Insta

¡ Sig6enPlcInsta

`pf Sig6en_Ob61(C

fl Objectl (ESTAC

A NI SigGenSOI_Measurementl

A al Scope Project

. Chart

A is

E Objectl (ES

Cursor

14 Trigger

1 1

Solution Explorer Resource View

02

Chart
Start 7 49 49 PM .

1

57 o. . .

l

. .

A.
i .
sI te Mond r. r .2014

P 00 1a000010ó00I [I I D Iloóouosa II O Ird L L

$igGeMpp 4 MAIN[Online] FR SrareMacflirle.F8 rat [Online] SigGeServicezh SigGenCla4fdctory<pp

BO

60

40

20

- 40

- 80

0.000s 1.000s 2.000s 3.000s 4.000s 5.000s 6.000s 7.000s 8.000s 9.00. 10.00.

Eos

el
EnSO1tTa

EnPosLa

EnVelLa

lelTgtO

TrgTgtO

rasTgtE

aas Ref E

lelTgtE

VeIRefE

] TrgTgtE
}y TrgRefE

Output

TrgRefi VelRel
1 1

Solution Explorer Resource View

Ka
K1

Ki

Kp
Na
Old antiwmdui
Dladerivative
Old error
Old Integral
Ref
Sum
SUmI
SUm2

SUm4

SUmS
Smrb
Sum]
Sum6

0 036 I

Ladd this signal to the TwincAT Measurement Project "Sig6enSOl_Mea s rementPr jectl"
scEicTorid, elpaa too

DataNav_ MoaMParamerers

Online

HACK 001(001)
HACN 3(3)
POSHMq% 0013(0013)
POSKAW 105(105)

POSKD 00II10.002)
POSKF 1(1)

POSO 4(5)
POSKP 15(15)

POSMH% 6283(6283)
POSMIN -6.2113 (4283)

POSND 5(5)
POSVMH% 8.82601e26)

TROHI (0.0.0.0)1(0.0.0.I
TROSS (0.0.0.8)1(0.0.0.I
TROPA (1:1:1:1)1(1:1:1:

Pos
SlaaupValue (OnlineValue)
IPrepureaValue)DSe the amp down ..

Solution Explorer 4 X SigSencpp V

© a I - 7 IObjecilCOn

Search Solution Explorer (Ctrl- P -
a[a¡ Solution SigGenSol' (2 projet

in SigGenSol
SYSTEM

® License

D Real -Time

r Tasks
PlcTask

CFask

EstacTask

ea Routes

® TcCOM Objects

x Objectl (ESTAC

Input

PosTgt

-
And

Scope Protects MAIN [Online] FB_StateMachire.FR_init [Online] SigGenCldsfdctory<pp

ÓAnriwindup Coupl
EnPOSLOOp

MoflTaclw
EnVelLoop
Logical Operator
Log, Operator

P

P unControlla

u.ntiwindup
antCant

Constano
Consunr.
Comm.
Cons np
Enaf
Enable
Nxw

i

Block Nervi) rios
Identifier <Root> '
Name ESTACreduced2
Path ESI'ACreduced2
Type root
[a/ V.0: Input
EnPonLoop FALSE (FALSE)
EnSO00acho TRUE (TRUE)
EnVelLoop FALSE (TRUE)®0(-1.3033)

InprRPes
Type: LREAL

Startup value: o

Prepared -1463733

Online value: -146%35

During the integration we faced some difficulties bringing the TC3 into run mode. The system simply remained in config
mode and no error was reported. Later on we discovered that the problem was due to a wrong configuration of the
parameters of the task calling the TC3 Simulink module. These parameters (task priority, step size, etc.) should match
the ones defined in the MathWorks coder Tc advanced configuration.

Figure 14: ESTAC Simulink model running in TC3 real-time environment.

Figure 15: Direct plotting of Simulink model signals.

Model
Inputs/Outputs

Hierarchical
tree view

Model
parameters Online values

Proc. of SPIE Vol. 9152 91522B-10

These tests demonstrated the versatility and the potential of integrating C++ and Simulink application into the TC3
environment. The direct benefits are:

• Re-use of existing and previously tested software components. Some minor modifications are required to adapt
the code to the new platform though.

• Simplification of the development by using a well known programming language in our environment. Most of
our software engineers are experienced C/C++ developers.

• Implementation of more advanced applications requiring higher order of performance.

The suggested architecture for applications combining PLC and C++ code is to encapsulate the interaction between the
hardware and the high-level software within the PLC part, and the computation of intensive tasks or complex algorithms
within the C++ part. Nevertheless, in the scope of instrument control and in order to keep it simple and to avoid
additional licenses, we intend to use C++ and Simulink only for those cases where this is justified, e.g. for the
computation of field rotation for tracking devices.

4. CONCLUSIONS

With the latest version of TwinCAT it is possible to develop PLC code not only with the traditional standard languages
specified in IEC61131-3, but also in C/C++ and Matlab/Simulik. This is a major advantage that opens the door to
implementing more advanced applications with a higher level of computational complexity, beyond what is covered by
traditional PLCs. Our laboratory tests of the new TC3 functionalities demonstrated the feasibility of reusing existing
VLT software code implemented in C++. This will certainly ease the implementation of instrument control software for
this new development platform.

The feasibility of integrating Simulink models running in the PLC and without any modification was also verified
confirming the expansion of the possibilities for this development platform not only for using specialized controllers like
ESTAC but also for implementing simulation capabilities.

REFERENCES

[1] Kiekebusch, M., Lucuix, C., Erm, T., Chiozzi, G., Zamparelli, M., Kern, L., Brast, R., Pirani, W., Reiss, R.,
Popovic, D., Knudstrup, J., Duchateau, M., Sandrock, S., Di Lieto, N., “PC based PLCs and Ethernet based
fieldbus: the new standard platform for future VLT instrument control”, Proc. SPIE 9152 (2014)

[2] Sandrock, S., Di Lieto, N.,Pettazzi, L., Erm, T., “Design and implementation of a general main axis controller
for the ESO telescopes”, Proc. SPIE 8451 (2012).

[3] http://www.beckhoff.de
[4] Di Lieto, N., "Standard Telescope Axes Controller, Control Algorithm Specification", ESO internal document,

(2011)
[5] http://www.mathworks.de/
[6] http://www.opcfoundation.org

Proc. of SPIE Vol. 9152 91522B-11

	SPIE Proceedings
	MAIN MENU
	Contents
	Search
	Close

