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ABSTRACT

Together with the development of the Large APEX Bolometer Camera (LABOCA) for the Atacama Pathfinder
Experiment (APEX), a new data reduction package has been written. This software naturally interfaces with
the telescope control system, and provides all functionalities for the reduction, analysis and visualization of
bolometer data. It is used at APEX for real time processing of observations performed with LABOCA and other
bolometer arrays, providing feedback to the observer. Written in an easy-to-script language, BoA is also used
offline to reduce APEX continuum data. In this paper, the general structure of this software is presented, and
its online and offline capabilities are described.
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1. INTRODUCTION

The Atacama Pathfinder Experiment (APEX) is a novel 12 m single dish sub-millimeter (submm) telescope,
operating from the Chanjnantor Plateau in Chile since 2006.1 It is equipped with heterodyne receivers covering
frequencies of 230 GHz to 1.4 THz (wavelengths 200 microns to 1.3 mm), and several large arrays of bolometers:
the APEX-SZ camera2 at a wavelength of 2 mm, LABOCA (870 µm) and SABOCA (350 µm). More bolometer
arrays are expected to come in the near future.

The Large APEX Bolometer Camera3 (LABOCA) consists of 295 bolometer detectors operating at 870 µm.
They are arranged in a hexagonal pattern, with two-beam spacing between individual detectors, resulting in a
field of view of 11.4′ in diameter. As part of the development of LABOCA by the Bolometer Group in the Max-
Planck-Institut für Radioastronomie (MPIfR), a new data reduction software has been written for processing
bolometer data acquired at APEX: the Bolometer array data Analysis software (BoA).

One reason for the need of a new software package was the new data file format. The raw data are written by
the APEX Control System (APECS4) in MB-FITS (Multi-Beam FITS) format. This format has been designed
and constantly extended during the first few years of APEX operations. In addition, one of the main drivers
for the development of BoA has been to provide high modularity, and an environment where the user can run
existing scripts, but also develop his/her own scripts to extend the capabilities of the software. As such, BoA
has been written in a scripting language, with the aim that each processing function can easily be modified for
specific needs.

BoA is an open source software. It is distributed under the terms of the GNU General Public License. The
source code and the external libraries required to run BoA can be downloaded from a dedicated page at the
MPIfR website∗. The software comes with a user and reference manual, as well as a set of typical reduction
scripts for LABOCA and SABOCA. In the present paper, I will describe the general structure of BoA, and
highlight its main functionalities. A typical pipeline for reducing LABOCA data is discussed in Section 5.

∗http://www.mpifr-bonn.mpg.de/div/submmtech/software/boa/boa_main.html



2. STRUCTURE OF THE SOFTWARE

2.1 Programming language

The BoA software is written in object oriented languages: most of the code is in Python, including many external
packages, while the most computing demanding tasks are written in FORTRAN95.

The BoA source code is made of several modules, that define functionalities for: raw data reading, analysis
tools, plotting procedures, and data processing. The latter applies to a so-called data object (see below), which is
created when BoA is started. More than one data object can reside at a given time in BoA (with different variable
names). They can be dumped to binary files, in a format specific to python, and restored later, e.g. during the
next BoA session.

2.2 The main data object

The main data object in BoA contains everything that may be required to process one or more data file(s). The
raw data are written by the APECS4 in MB-FITS (Multi-Beam FITS) format. Once such a data-file is read
in BoA, the data object is filled up with all relevant information, which can be divided in three groups: the
telescope (coordinates) data, the description of the bolometer array, and the data values themselves.

2.2.1 Telescope data

All the information related with coordinates and time is stored into the ScanParam attribute of the data object.
This includes: coordinates where the telescope has been pointing, in horizontal, equatorial and galactic systems;
time stamps in MJD and LST; target name and reference coordinates; sub-scans related information: sub-scans
numbers, and integrations numbers they correspond to; when relevant, wobbler phases. Note that the telescope
positions expressed as offsets (with respect to the reference position) in horizontal system, as they are stored in
the raw data file, include the wobbler displacement, when relevant.

In addition, an array of flags is attached to the ScanParam attribute, in order to flag the data recorded by
all bolometers at given times during the scan. Functions exist to flag the data in a given interval of time, or
according to the position of the telescope (e.g. when the offset in Azimuth exceeds a given value). It is also
possible to temporarily flag (or mask) some part of the data, and unflag it later.

2.2.2 Bolometer array

The most important information about the instrument in use is stored in the MB-FITS files: telescope name
and diameter; effective observing frequency; global gain settings or attenuation factors; for an array of detectors,
relative positions of the pixels, and their relative gains; reference channel number.These data are read in by BoA
and stored in the BolometerArray attribute. At the time of reading, BoA also derives the nominal instrumental
beam size from the telescope diameter and effective frequency.

The relative offsets between pixels and their relative gains can latter be updated in BoA, by reading a so-
called RCP (Receiver Channel Parameter) file (see also Sect. 5.1.1). The values written in the MB-FITS file are
the ones known to APECS at the time of observing. These may be not up-to-date, but beam maps are observed
and processed regularly, in order to update the pixels positions and gains a posteriori.

Here also, an array of flags is associated with the BolometerArray attribute, to allow the user to flag all data
recorded by a given pixel (or by a list of pixels).

2.2.3 Data values and weights

Finally, the data values are stored in a 2-dimensional array: the Data attribute, with size equal to number
of pixels × number of integrations. At the time of reading, the values present in the file are corrected for
global gain/attenuation factors. They can later be converted from instrumental units (counts) to physical units
(Jy/beam), using the conversion factor that has been measured. They can also be corrected for the atmospheric
attenuation, computed as exp(τz / sin(El)), where τz is the zenith opacity and El is the median of the elevation
during the observation.



During the reduction of an observation, the content of the Data array is permanently updated by any pro-
cessing task. For example, applying a flat field divides all the data values for a given pixel by the associated
relative gain. A description of the main processing tasks is given in Sect. 5.

A second array, with the same size as the Data array, contains the weights associated to the data. The user
needs to explicitly tell BoA to compute these weights before building a map (Sect. 5.4). Two methods exist to
compute the weights: either using natural weighting (where each pixel has a constant weight along the time,
equal to 1/r.m.s.2), or using sliding weights, also equal to 1/r.m.s.2, but this time computing the r.m.s. within
a sliding window containing a given number of integrations. In the latter case, if all data points are flagged
within a window (which can happen e.g. when masking a source), the corresponding weights are computed by
interpolating between available values before and after that window.

Another 2-dimensional array contains flags, associated to individual data values. Again, it is possible to
temporarily mask part of the data and unflag them later.

Finally, one attribute is attached to the main data object in order to compute and store a map (Sect. 5.4). This
contains the map itself (a 2-dimensional array of pixel values), as well as a description of the map coordinates:
projection system, pixel scale and limits of the map.

2.3 Associated methods

Functions have been defined to perform all kind of data processing; examples are described with more details in
Sect. 5. Shortcuts have been defined, which apply to the default data object, to ease the use of these functions
from the interactive prompt in python. The functionalities present in BoA include: signal plotting (Sect. 3);
flat fielding and calibration (Sect. 5.1); data flagging and unflagging (Sect. 5.2); baseline and correlated noise
subtraction (Sect. 5.3); filtering in the Fourier domain; computing, displaying and exporting a map (Sect. 5.4).

3. DATA VISUALIZATION

One of the strengths of BoA is to allow the user to visualize the data in many different ways This includes:
plotting the bolometer signal vs. time (see an example in Fig. 1), displaying correlation plots (signal in each
bolometer vs. signal in an arbitrary reference bolometer), plotting the mean or r.m.s. values per bolometer,
computing and displaying Fourier transform of the signals. Each of these functions can display the data of all
bolometers, or restricted to any number of bolometers. The user can also overlay several plots on each other, as
illustrated in Fig. 1.

Once a map has been computed, the user can display the map itself, but also the coverage plane or the weight
plane associated to it. BoA also provides a function to zoom into a sub-region of the map. Finally, another
function allows to look at the values of individual pixels, or average values over a small region. However, BoA is
not aimed at providing extensive analysis tools. Once a map has been computed (eventually co-adding several
scans into one map), the user should export the result is standard FITS format, in order to use any other software
to perform further analysis.

4. ONLINE DATA PROCESSING

The BoA software is interfaced with the APEX Online Calibrator, which is part of APECS. The purpose of this
calibrator is to automatically perform a quick reduction of almost all observations, and to provide feedback to
the observer. This is of particular importance for the reduction of pointing and focus scans, since any deviation
from the optimal pointing and focus settings that can be inferred from these scans should be corrected for before
starting the next science observation.



Figure 1. Example plots produced with the signal function, for two bolometers. Left: raw data (black) and data after
median noise subtraction on the full array (red). Right: data after median noise subtraction on the full array (black) and
then after median noise subtraction on amplifier boxes (red) - see also Fig. 3.

4.1 Pointing scans

LABOCA is operated in total-power mode, which means that, usually, no chopping secondary (wobbler) is used
when observing with LABOCA. Thanks to its high sensitivity, pointing scans on bright sources (>10 Jy peak
flux) can be performed with a single ∼30 s long spiral pattern. Such scans are automatically recognized as
pointing scans by the online calibrator. They are processed using a quick reduction procedure: a zero-order
(median) baseline is subtracted in each pixel; then pixels with excessively low r.m.s. (dead pixels, or not seeing
the sky) and the ones with very high r.m.s. are flagged; then, the correlated noise is computed and subtracted
using median estimates (see Sect. 5.3 and Fig. 3 for details); then, a map is computed, in horizontal coordinates
(offsets in azimuth and elevation with respect to the nominal target position), using natural weighting. Finally,
a 2-dimensional Gaussian profile is fitted on the map, in order to derive the observed position of the source.

The pointing errors (δAz, δEl) derived from this fit are sent by BoA to APECS. The observer can then
apply these corrections. During the reduction, the signals in the reference pixel and in three comparison pixels
are plotted, as well as the map built from the processed data, together with the results of the Gaussian fitting
(Fig. 2). Thus, the observer can verify that the pointing offsets computed by BoA make sense, given the quality
of the map.

Correcting for the telescope pointing errors is best done as close as possible to the science target. But the
sky does not contain bright pointing sources in all directions. Therefore, it is usual to do such a pointing scan
on a relatively faint (∼1 Jy) compact source. Then, the observer can use an existing script optimized to process
observations of such moderately faint sources. The main difference compared to the online reduction of pointing



Figure 2. Example display from the online calibrator during the reduction of a pointing scan. The four panels show:
signals in the reference pixel and three comparison pixels before any processing (top left). Same after correlated noise has
been removed (top right). Map in horizontal coordinates built by combining all pixels (bottom left); the results of a 2D
Gaussian fit are also shown: peak flux, position and size of the Gaussian profile. Finally, a map of the r.m.s. per pixel is
shown (bottom right), where all used pixels are plotted at their relative positions. A quick estimate of the median value
of the noise equivalent flux densities in all channels is computed and shown on top of this map.

scans is that more iterations of correlated noise removal are computed, in order to decrease the noise level in
the final map. Then a 2-dimensional Gaussian profile is fitted on the map, and, if the source is detected with a
sufficient signal-to-noise, the observer can apply the pointing corrections computed by this BoA script.

4.2 Focus scans

Focus scans have to be observed from time to time, in order to check the focus settings of the telescope, and
correct for them if any deviation from the optimal position is found. This is especially important when the air
temperature changes quickly, e.g. after sunrise or sunset. A focus scan consists of a number of sub-scans, where
each sub-scan is a short integration (5 to 10 s) staring at a very bright source (typically the planets Venus,
Saturn or Mars, the fainter planets Uranus and Neptune can also be used when the atmosphere is stable), at a
given focus setting. One of the focus axis (X, Y or Z) is changed by a small amount between each sub-scan.

The online calibrator also recognizes such scans, and they are automatically processed using a quick procedure:
first, a constant is subtracted from the signals in all pixels, so that they all start at zero; then, a first attempt
to determine the optimal focus setting is done, by fitting a parabola to the flux observed by the reference pixel
(the one that stares on the source) as a function of the focus position; then, the correlated noise is estimated
and subtracted from all pixels; finally, a second parabola fit is performed to derive the optimal focus position.

Here also, the result is sent to APECS, and the observer can apply the correction computed by BoA. The
signals seen by the reference pixel, plus three comparison pixels, are shown before and after sky-noise removal,



as well as the results of the parabola fits. Thus, the observer can appreciate the quality of the fit, and of the
sky-noise subtraction.

4.3 Science data

Most science observations conducted with LABOCA consist in maps, acquired with fast scanning patterns (either
linear on-the-fly maps, or one or several spirals optimized to cover a given field; see Sect. 8 in Siringo et al.3).
Such observations are also quickly reduced by the online calibrator, except for the very long integrations (more
than ∼25 min.), which result in very big data files that would take too long to process, and this would slow down
the full system.

For data files smaller than 100 MB (which roughly corresponds to 25 min. integration with a sampling rate
of 25 Hz), the following quick reduction is performed: pixels with very low r.m.s. (dead or not seeing the sky) or
with excessive noise are detected and flagged; correlated noise is computed and subtracted, with three iterations
on the full array; a first-order polynomial baseline is subtracted in each pixel; spikes are detected (data-points
at more than 10-σ, where σ is the r.m.s. in a given pixel; note that very bright sources are also considered as
spikes in this case), and flagged; finally, a map is computed in equatorial coordinates, using natural weighting of
the individual pixels. This map is displayed, together with the r.m.s. in the map, computed in the part of the
map with enough coverage to be significant (i.e. excluding the edges of the map, where the noise level quickly
increases because of the sparse coverage).

5. OFFLINE DATA REDUCTION

In this section, a typical processing sequence data is presented. The structure of this pipeline is illustrated in
Fig. 3. This applies to LABOCA as well as SABOCA data; example scripts are provided for both instruments
with the software. They cover a range of practical cases, from faint to bright sources, and from point-like to
extended; but all scripts follow the same structure, with only subtle differences in a few parameters, such as the
number of iterations for sky-noise subtraction, or the masking of the source.

5.1 Calibration

5.1.1 Updating receiver channel parameters

Default values for the bolometer relative gains and relative positions are contained in the raw data-file. These
can be updated with more accurate values, e.g. as derived from beam maps observed close in time to the science
data. BoA provides functions to select the appropriate RCP file from a list as a function of observing time.
Then, the flatfield function should be called to divide all bolometer signals by their relative gains.

5.1.2 Photometric calibration

One of the major difficulties in calibrating sub-mm data is a proper estimate of the sky opacity. This is based on,
both, regular observations of skydips (where the bolometers are measuring the sky emission while the telescope
is tipping from high to low elevation), and observations of primary or secondary calibrators (sources for which
the flux at the observing frequency is known). Any deviation between the expected flux and the observed flux
for these calibrators can thus be measured, and this calibration correction factor can be applied to the science
data.

Example scripts are provided to process lists of skydips and of calibration scans, and to store the results in
text files. Then, BoA provides functions to compute the sky opacity and the calibration correction factor at any
given time by means of linear interpolation between the values stored in these files. This calibration should then
be applied to the science data.

Sky opacities and calibration correction factors are regularly computed by the APEX staff, using default
reduction scripts. These values are available online†. However, users are encouraged to process the calibration
scans available with their data themselves, in order to decide on their own the best calibration values. Typically,
a photometric uncertainty of ∼10% with LABOCA and ∼20% with SABOCA can be achieved.

†http://www.apex-telescope.org/bolometer/laboca/calibration/



Figure 3. Left: A complete reduction sequence is shown for LABOCA data, going from the raw data to the reduced data,
ready to be projected onto a map. Right: Detailed description of the median noise subtraction method. Not only the
correlated noise, but also the relative gains are computed using median values.

5.2 Data flagging

Several functions have been defined to flag (or to temporarily mask) part of the data, either within the 2D
array of data values, or for all bolometers simultaneously in given ranges of time, or to flag some bolometers
completely. For example, a function despike looks for data values that deviate by more than a number of sigma
from the mean value in each bolometer time stream. Other functions provide ways to mask part of the data that
correspond to a certain region of the sky, defined with a circle, or a polygon.

In addition, a function allows the user to use a map object (e.g. the result of a previous reduction) in order
to mask in the data the values that correspond to pixels in this map above a given threshold (Sect. 5.5). This
is very useful when bright sources are present in the data, since their fluxes may affect some of the processing
steps, such as baseline subtraction or correlated noise removal.

5.3 Correlated noise removal

Because it is working in total-power mode, at a wavelength where the emission from the atmosphere is much
brighter than that from any astronomical object (except possibly the Sun), the main source of noise in LABOCA
data comes from the slow variations of the atmospheric emission, also called sky-noise. Fortunately, this emission
is highly correlated on the spatial scale of the detector array. BoA provides two methods to compute (and
subtract) the correlated emission.



5.3.1 Median noise

The first method uses medians to compute the fraction of the signal that is correlated between pixels. Median
values are a better estimator than mean values, because they are not affected by strong (compact) sources.
However, extended sources, with uniform emission on spatial scales large enough so that half the pixels considered
for computing the correlated “noise” see these sources, are considered as sky-noise and their flux is also subtracted
from the data.

By default, this procedure proceeds in two steps (see right panel in Fig. 3: first, the relative gains between
pixels are estimated, using median values of the ratios between one pixel signal and a reference signal. The
reference signal can be either the signal in one particular pixel, or the average of all signals, or the median of all
signals. For each pixel, the ratio between its signal and the reference signal is computed as a one-dimensional
array (as a function of time or integration number), and the median value of this ratio is considered as the relative
gain of this pixel, and is stored internally (but the signal is not modified according to this gain). Optionally,
the user can skip this step and let the function use relative gains that were previously stored in the data object
(these gains are initialized to ones by default).

As a second step, the correlated signal is estimated, also using median values: at each integration step, the
median between all normalized (using the relative gains computed in the previous step) signals is considered to
be the correlated noise. Finally, this correlated signal is scaled by the relative gain of each pixel, and this (or a
fraction of this) is subtracted from all pixel signals.

This method can be applied to all bolometers in the array, or to sub-groups of bolometers. In the case of
LABOCA, this is of particular importance to significantly reduce the noise level: the correlated noise caused
by the variations of the sky emission is mostly correlated over the full field of view, but additional components
of correlated noise are coming from some electronic sub-systems. In particular, groups of bolometers that are
connected to a given amplifier box (corresponding to one quarter of the field of view), and sub-groups that are
connected on a given flat cable (corresponding to a spatial scale of ∼5′×2′, see Siringo et al.3 for details on the
electronic scheme of LABOCA) show correlated electronic noise. However, special care should be taken in order
not to filter out real extended emission; when only point sources are expected, iterating several times on the
correlated noise removal by groups of pixels helps in decreasing the final noise level.

5.3.2 Principal component analysis

The other correlated noise removal function is based on a principal component analysis (PCA) and filtering.
Comparisons between the results obtained when applying this method, and with the median noise removal,
showed that they give similar results, both with LABOCA and with APEX-SZ data. However, the effect of PCA
filtering on the true astronomical signal is difficult to predict. Therefore, most results published so far based
on BoA data reduction were obtained using the median noise removal method. More elaborated methods, e.g.
fitting and removing a low-order two-dimensional polynomial function across the array at each time step, can
also easily be implemented in BoA.

5.4 Map making

At any time during the reduction, a map can be computed, using all or part of the data currently in memory.
Three coordinate systems are implemented in BoA: Horizontal (offsets in azimuth and elevation with respect to
the reference coordinate), Equatorial J2000 and Galactic coordinates. The map-making procedure computes a
map by dumping and co-adding the data values on a grid of pixels, without using extra information from the
redundancy within the map. By default, the map-making procedure dumps each data value into the nearest
pixel; optionally, the value can be divided into the four neighbour pixels, with fractions depending on the exact
location of that data point with respect to the pixel grid. The mandatory arguments for the mapping function are
the limits in X and Y (when not given, default values are computed in order to encompass the full region covered
by the data) and the pixel scale (default value is half the instrumental beam). The data values are co-added
using a weighted average, where the weights have to be computed prior to building the maps (Sect. 2.2.3).

The resulting map can be dumped into a binary file, that can be later imported again in BoA. It can also
be exported into a FITS file, with a standard FITS header containing a description of the coordinates following



the WCS specification.5 Currently, the only projection system implemented in BoA is GLS (Global Sinusoid,
equivalent to the Sanson-Flamsteed - SFL - projection; see Calabretta & Greisen6 for details). By default, the
output FITS file contains three planes: the flux map, the weight map and the coverage map. The weights are
computed by summing all data weights that have contributed to one given pixel. The coverage plane is similar,
but considering all weights equal to one (in other words, the coverage gives the number of hits in a given pixel).

When several observations cover the same region of the sky (or if they overlap), they can be processed
independently, and maps covering exactly the same region (and with the same pixel scale) can be built from
each observation. These maps can then be co-added, using a weighted average, into one combined map. This
“final” map can also be exported as a binary (python) file, or into a FITS file.

5.5 Iteration with source model

At the end of the reduction sequence, once a map has been computed (eventually combining several scans), it
is sometimes useful to repeat the full processing in an iterative way. The result map can be used as a model
to mask in the data the measurements that correspond to pixels in the map above a given threshold. It is also
possible to compute a signal-to-noise map and use it as a model to mask the data points where highly significant
emission has been found. The processing steps are then computed ignoring the masked data, but the results (for
example subtracting a baseline) are also applied to them.

Such iterative reduction scheme is of critical importance in the presence of bright sources, for example in the
Galactic plane.7 In such complex fields, masking the data that correspond to strong emission is not the best
solution, because too much data are masked when also extended emission becomes significant. Also, a drawback
of masking part of the data is that spikes that sit on top of a bright source can never be identified and flagged.
For these reasons, it is better to subtract a model (i.e. the map resulting from the previous iteration) from the
raw calibrated data, and then repeat the full reduction sequence.

This iterative scheme can be repeated any number of times. For example, in the case of the ATLASGAL7

data, 15 iterations have been performed to produce the final maps. Also when no really strong source is present
in the field, this iterative processing can be useful in order to recover as much extended emission as possible.
This method has been used by Belloche et al.8 on LABOCA data covering the Chamaeleon molecular cloud.
They also performed extensive simulations in order to estimate the fraction of flux lost by the data processing
as a function of source size and of number of iterations. The results that they present in their appendix apply to
any LABOCA data processed in a similar manner, i.e. with the median noise removal method and an iterative
reduction scheme.

6. CONCLUSION

In the past few years, BoA has been used by an increasing number of people to process LABOCA, SABOCA
and APEX-SZ data. The results have been published in major journals of astrophysics research.

Since BoA is an open-source software, anybody can contribute to its further development, either by adding
functions in the source code of BoA itself, or by writing and sharing reduction scripts. Current developments
at APEX and at the MPIfR include a parallelization of the most demanding processing steps, in order to make
BoA able to reduce data taken with the next generation of kilo-pixels cameras.
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