
 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

 Evolution of the Phase 2 Preparation and Observation Tools at ESO 
 

D. Dorigo*a, B. Amarandb, T. Bierwirtha, Y. Junga, P. Santosa, F. Sognia, I. Veraa  
aEuropean Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany;          

btop itservices AG, Inselkammerstr. 1, D-82008 Unterhaching, Germany 

ABSTRACT   

Throughout the course of many years of observations at the VLT, the phase 2 software applications supporting the 
specification, execution and reporting of observations have been continuously improved and refined. Specifically the 
introduction of astronomical surveys propelled the creation of new tools to express more sophisticated, longer-term 
observing strategies often consisting of several hundreds of observations. During the execution phase, such survey 
programs compete with other service and visitor mode observations and a number of constraints have to be considered. 
In order to maximize telescope utilization and execute all programs in a fair way, new algorithms have been developed to 
prioritize observable OBs taking into account both current and future constraints (e.g. OB time constraints, technical 
telescope time) and suggest the next OB to be executed. As a side effect, a higher degree of observation automation 
enables operators to run telescopes mostly autonomously with little supervision by a support astronomer. We describe 
the new tools that have been deployed and the iterative and incremental software development process applied to 
develop them. We present our key software technologies used so far and discuss potential future evolution both in terms 
of features as well as software technologies. 

Keywords: proposal submission, web, process, scheduling, observing block, Hibernate, Spring, domain modeling 

1. INTRODUCTION  

At ESO the submission of observing proposals is dealt with in terms of six months intervals called periods. These 
periods are further subdivided into a phase 1 and a phase 2. The first phase of proposal submission starts at the beginning 
of the period with the call for proposals. During the proposal submission phase the principal investigators apply for 
observation time. The received proposals are then evaluated, ranked and accepted or rejected by a panel of external 
expert astronomers, the so-called observing programs committee (OPC). The accepted proposals are then scheduled for 
observation on the VLT. This ends phase 1 of the observation handling at ESO. Phase 2 deals with the detailed technical 
specification of the proposal in terms of observing blocks. An observing block is a single unit of observation of a specific 
target with a detailed description of the instrument configuration and the visibility/weather constraints. P2PP is the tool 
supporting investigators in the creation and editing of observing blocks. P2PP follows a client/server paradigm, allowing 
investigator to first work offline using a local client and to later connect and submit the created observing blocks to the 
ESO phase2 database. The created observing block are verified and validated by the support astronomers in Garching 
using the observing tool (OT). Finally, OT is also used by the VLT telescope operators to execute service mode 
observations. The raw files generated during the observation are then archived back to Garching and a night report is 
produced. This ends the phase 2 workflow. The phase 2 infrastructure has been thoroughly reviewed in order to support 
the specific requirements of survey observations at the VLT, primarily on the VISTA and VST telescopes. While P2PP 
and OT remain our core tools used in the data flow, they have been significantly extended with new concepts and a 
higher level of automation. Additionally, new tools have been added to simplify the night reporting workflow at the 
observatory and to minimize error-prone manual intervention throughout the night. Finally, the adoption of modern web 
technologies and of an iterative, incremental software development process with frequent interaction with Paranal 
astronomers allowed us to significantly increase our productivity and the quality of our software deliverables. 

2. BRIEF HISTORY OF PHASE 1 / 2 

The VLT end-to-end data flow model, of which ESO’s phase 1 and phase 2 proposal submission is an integral part, was 
initially designed in late 1995 using Rumbaugh’s Object Modeling Technique (OMT). OMT helped a lot in the definition 
of a clear design that models the observation data flow. A first prototype of the system was verified and validated during 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

the 1997 major update - known as big-bang - of the ESO New Technology Telescope (NTT). This first success was then 
extended to the VLT in 1999. The core concepts were  

•  Proposals and Observing Runs 

•  Observation Blocks 

The design choices that have driven the evolution are:  

•  Thin interfaces with well-defined protocol to the control software  

•  Clear separation of generic versus instrument-specific concepts and implementation 

 
Figure 1: The VLT data flow 

Phase 1, i.e. the submission, evaluation and long term scheduling of the observing programs at ESO is under the 
responsibility of the observing programs office (OPO), while phase 2, i.e. the verification of the submitted observing 
blocks and the observation execution at the telescope is managed by the user support department (USD) and Paranal 
Science Operations (PSO). This separation of concerns at the organizational level is reflected in many aspects of the 
software architecture, such as the creation of dedicated phase1 and phase2 databases and associated software 
applications. It is crucially important to take these organizational aspects into account when designing and evolving the 
overall software architecture, when devising workflows and defining interfaces. Experienced software architects often 
cannot deny that organization shapes architecture, wishing it was the other way round. All phase 1 and phase 2 
applications are developed by the data flow infrastructure department (DFI). 

2.1 Phase 1 Evolution 

In the first implementation of phase 1 in 1998, a principal investigator wishing to submit an observing proposal had to 
download a LaTeX package from an ESO ftp server. A dedicated LaTeX template to be filled in provided structure and 
was used both for word processing as well as verification and validation of the supplied input. The completed LaTeX 
form was sent to ESO via email, its content was validated and if all was fine, a confirmation email was sent requesting 
the submission of supporting material such as pictures. If validation failed, errors were also reported via email. The 
proposal evaluation process and the notification of the results back to the principal investigators were entirely manual 
and extremely expensive and stressful.  



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

The phase 1 process evolved with the introduction of web technologies. Given our strong Java competence we started 
using the first generation web framework Struts 1.x, allowing the dynamic creation of web pages by means of Java 
Server Pages (JSPs). We gradually adopted Struts as the basis for more and more web applications. After almost a 
decade using this framework, our system of web applications is mature and robust. Several web applications support 
investigators in their proposal submission, automatic validation and in accessing information about granted observation 
time. Proposal referees are supported in their review procedure and in reporting of institutional conflicts. These web 
applications are accessible via a common user portal, an “umbrella” application providing user account management and 
a single-sign on infrastructure. Finally, several internal Java desktop tools are used to set up, monitor and administrate 
the entire phase 1 proposal submission cycle. However, from today’s point of view, our system is also fairly rigid, 
making future changes somewhat slow and expensive. Since the beginning in 2003, web technologies have evolved 
dramatically on both productivity and features and only small changes and bug fixes are still reasonable for the existing 
applications.    

2.2 Phase 2 Evolution 

The phase 2 proposal preparation software (P2PP) is used by principal investigators for the detailed specification of their 
observations in terms of observing blocks. The initial version of P2PP was implemented in TCL/TK. While in version 2 
the fundamental concepts remained the same, it was coded in Java to provide significant usability improvements and to 
benefit from a truly object-oriented language. The driving requirements for P2PP were 

• Clear separation of generic observing block from instrument-specific specification 

• The ability for the principal investigator to work offline and submit the work to ESO at a later stage 

• Whatever is entered doesn’t need a save button 

An important, very valuable architectural decision in P2PP was the strong separation between generic observing blocks 
to specify common observing constraints and instrument-specific templates (acquisition, science, calibration) to specify 
the details of all instrument-specific parameters. This concept also cleanly separates the development of the core tool 
from the independent development and evolution of so-called instrument packages. The requirement to work offline was 
realized in terms of a client/server architecture. The client communicates to the server using remote method invocation, 
which was initially implemented with Java RMI, but later replaced by the HTTP-based HttpInvoker protocol to more 
easily cross network firewalls. These basic concepts remained the same also with the recent extension of P2PP to 
supporting scheduling containers. 

Once service mode OBs have been submitted to the ESO phase 2 database, the next step in the data flow is their review 
and validation by the user support department using OT. The validated observations are then ready for execution at the 
VLT. While VLT service mode observations are carried out using OT, visitor mode observations are executed with 
P2PP. This is easily possible because both applications share the same domain layer implemented in a common code 
base and a similar development cycle. Any changes on the domain and data access layer have to be synchronized.      

The original design of the phase2 tools already stipulated the necessity of a tool supporting the decision making process 
about what to observe next called Short Term Scheduler (STS). An initial ambitious project applying constraint 
programming techniques to address the complex scheduling challenges did not succeed. A second, simpler approach to 
suggest the next service mode OB to be executed was implemented and deployed on the VLT in 2007. While the 
algorithm provides useful predictions on some instruments, it did not gain full acceptance on Paranal. Important criteria 
such as instrument-specific constraints or empirical probability distributions of weather parameters such as seeing and 
sky transparency were not yet taken into account, such that expert night astronomers could still significantly – although 
manually – optimize the scheduling. The public survey project for VISTA and VST came at the right time for us to start 
over on OB ranking/scheduling from a broader perspective. 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

 
Figure 2: OB specification, review and execution workflow 

3. THE SURVEY PROJECT 

The execution time of most observation blocks is at most one hour.  In a typical VLT night there will be around 10-20 
observation blocks observed per UT. This number is still tolerable for manual scheduling by the night astronomer or 
telescope operator. On the other hand, surveys observations typically consist of thousands of OBs while their execution 
time is often much shorter. In a good night on VISTA or VST, there can be more than 50 OBs, each with a duration 
down to a few minutes only. OBs may be logically dependent and there is competition between different scientific 
programs. The most important requirements were: 

• Enable principal investigators to express higher-level, long term observing strategies consisting of several OBs 

• Allow the night astronomer to plan the overall observing strategy, but enable the telescope operator to execute 
observations independently for most of the night 

• Maximize telescope usage while guaranteeing fair competition between programs on the same telescope 

• Minimize operational overhead and provide comprehensive, highly automated online reports and statistics. 

At the VLT facility, VISTA and VST are the first telescopes dedicated to run survey programs strictly in service 
mode only. It was obvious that running such large survey programs while meeting the above requirements was 
hardly possible within the available UT concepts and tools. The number of OBs, the complex observing strategies 
and the short OB execution time would require another level of automation. 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

4. SCHEDULING CONTAINERS 

Before the introduction of scheduling containers, the OB was the atomic and only unit of observation on the VLT. 
Longer-term observing strategies introducing dependencies between several OBs were informally described by the 
investigator in a text file attached to the observation block. In order to enable investigators to formally express higher-
level observing strategies in terms of dependencies between the execution of observing blocks, three types of scheduling 
containers of observing blocks were introduced: Time Links, Concatenations, Groups. Retrospectively, the usage of the 
term scheduling is a bit misleading since, as we discuss later, we are actually not scheduling but only ranking OBs. 

 A time link defines an ordered sequence of OBs with minimum and maximum execution time delay between them; 

 
Figure 3: Time Link  

A concatenation defines an unordered set of OBs to be executed with no break, for example a science OB immediately 
followed by a calibration OB. 

 
Figure 4: Concatenation 

A group allows principal investigators to express their preference to execute several OBs “close to each other”. The 
constraint on execution preference is only desirable, not mandatory. A group has a group score which is initially 0%. 
Each group OB has a group contribution that is added to the group’s score after successful OB execution. Group OBs 
with higher group score are given higher execution priority. 

 
Figure 5: Group 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

5. CURRENT PHASE 2 INFRASTRUCTURE 

At the time of this writing, VISTA, VST and UT2 have already been migrated to a completely new phase 2 tool chain 
supporting the definition and execution of scheduling containers. The deployment to the remaining UTs and the VLTI is 
to follow later this year. While some of the tools are upgrades of earlier versions, other tools have been newly introduced 
to optimize the observation and reporting workflow during the night and to significantly reduce manual work. The main 
tools are as follows 

• New Phase 2 Database & Replication – Storage of scheduling containers and OBs, two-way replication 
between Garching Headquarters and Paranal Observatory. 

• P2PP 3 – Service mode specification tool. Used by principal investigators for the definition of scheduling 
containers and OBs and for editing changes to ongoing surveys programs. 

• OT 3 – Service mode observing tool. Used by telescope operators and night astronomers to suggest the next 
service mode OB to be executed, applying a sophisticated OB ranking engine; also used by the user support 
department for reviewing submitted OBs. 

• vOT – New visitor mode observing tool replacing P2PP 2 on the mountain. Used by visiting astronomers to 
execute visitor mode observations. Visitor mode OBs will now also be ‘seen’ and reported in Garching. 

• Night Log Tool – Completely new night reporting web application used by telescope operators and night 
astronomers at the Paranal Observatory. 

• Garching Night Log Tool – Completely new night reporting web application deployed in Garching to 
provide full online access to night reports/search/statistics to authorized users and access to observing run 
progress pages to principal investigators. Additionally, it allows the configuration of report distribution profiles 
to send specific telescope reports in PDF to a defined list of email recipients. 

In the next chapters we describe the current infrastructure and the implications. 

6. NEW PHASE 2 DATABASE AND REPLICATION 

The new scheduling container concepts were modeled with a generic database schema. During the initial design, not all 
container types and their properties were known yet. Hence, we decided to design a generic tree-like model.  

 
Figure 6: domain model for generic scheduling containers 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

The current schema uses a table for a generic node and a table for the edges connecting nodes. The additional properties 
of a specific container type (e.g. time link interval) are then stored in other tables in a parent-child relationship with the 
generic nodes and edges. This design also allows for later extension to nested containers, for instance time links of 
concatenations, a feature that would for instance be beneficial for the VLTI. It has to be said however that this generic 
design also comes with a non-negligible level of implementation and maintenance complexity. 

7. P2PP, HIBERNATE AND SPRING 

P2PP was the first application using the new database schema. In the previous P2PP version, the mapping between the 
domain model and the relational database was provided by an in-house solution called object manager. While P2PP and 
OT benefitted a lot from this solution, it was also complex to understand and limited in its capabilities. With the 
increasing popularity and maturity of object-relational mapping (ORM) frameworks, we decided to use Hibernate as our 
primary mapping layer. Given the complex nested phase 2 domain model, we wanted to benefit from powerful ORM 
features such as cascaded updates and deletes, eager fetching and automatic dirty checking and saving. In order to 
improve the maintainability of our code and make it more testable we introduced a comprehensive service layer on top of 
the domain model allowing to call services such as both locally (by the P2PP server) as well as remotely by the P2PP 
client. Note that for offline storage, the P2PP client uses the local file-based SQL database engine H2 which is accessed 
by the same service and ORM layer. While Hibernate solved the challenge of mapping our object-oriented domain model 
to a relational database, we still had to address the question how to implement many standard features common to many 
client/server applications in the service layer. We introduced the dependency-injection framework Spring into P2PP, and 
made comprehensive usage of it, with features such as authentication, role-based authorization, remote method 
invocation, aspect-oriented programming for logging and database transaction management up to even applying the 
Spring Rich Client framework for the graphical user interface. Using this framework provided us with a major leap in 
productivity and maintainability, allowing us to replace a lot of infrastructure code by much simpler bean configurations. 

 
Figure 7: P2PP 

As a result P2PP as well as vOT are now user friendly, highly-maintainable applications based and established standard 
technologies. 

 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

8. OT RANKING VERSUS SCHEDULING  

OT also partially adapted the new P2PP technologies, but while P2PP focuses on user-friendly specification and 
representation of survey observations, OT’s focus was to support the automatic ranking of service mode observations at 
the telescopes. With the lessons learned from the past short term scheduler project, we decided rather than actually 
scheduling OBs, we instead take the somewhat simpler approach to filter and prioritize (i.e. rank) OBs for a given 
moment in time.  

 
Figure 8: OB Filtering and Ranking in OT 

While this approach sounds somewhat simpler, the applied algorithms are highly sophisticated and take into account the 
vast operational knowledge of highly experienced night astronomers, empirical probability distributions measured over 
several years and the outcome of dedicated simulations. For VISTA and VST we can already conclude that these are the 
first telescopes at the VLT observatory than can be run fairly autonomously by the telescope operators. Yet, there are 
still major improvements ahead of us which are already being implemented, specifically a more comprehensive 
consideration of instrument-specific constraints. 

Since the OB filtering and ranking requirements on OT are of highly astronomical nature, it was obvious to us that it was 
of utmost importance to establish an intensive feedback loop to the Paranal experts for the ongoing consolidation and 
refinement of requirements. While detailed formal specification was written and continuously kept up-to-date by the 
software development team, the content was repeatedly reviewed and discussed with all stakeholders, i.e. project 
scientists, operators, developers, testers and served as the basis for functional testing by the software engineering 
department (SED). We introduced an incremental, iterative development approach, in which we incrementally 
implemented new features, tested them, deployed them in Paranal and gathered and incorporated feedback from 
operational usage. We reacted quickly to change requests and additional requirements to gain the project scientist’s 
confidence that we are responsive to his feedback and we are actually delivering a tool that adds value. OT for VISTA 
had 24 beta releases and most of them were used by stakeholders either in Garching or at the VLT. The fast cycle of 
requirement → implementation → deployment → feedback was a major improvement in exploring and understa nding 
what was really necessary. In order to make sure that the SW quality can still be guaranteed in such a frequent release 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

cycle with a high change rate, a comprehensive automated functional test suite was developed by a test engineer. The 
tester was able to carry out both regression testing as well as new features within two days using automatic test 
procedures.  

 
Figure 9: Iterative, incremental development and testing of OT 

 
Figure 10: OT filter/ranking panel 

The current filtering and ranking algorithm is already proven to be very successful on VISTA and VST. It works as 
expected but also sometimes produces interesting surprises that the astronomers did not expect but that are well justified. 
In almost 95% of the time the telescope operator relies on the OB rank as provided by OT. Only minimal additional 
supervision by the night astronomer is still given in the first half of the night. The scientists at the VLT can now 
concentrate on the science produced by the telescopes instead of the technical complications of the scheduling. The 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

success with VISTA/VST propelled the deployment of the new tools also to the other VLT telescopes. While UT2 has 
started using the new tool chain as of April 1st 2012, we are currently preparing the deployment to the remaining UT 
telescopes and the VLTI as of October 1st.   

9. NIGHT LOG TOOL AND GRAILS 

The Night Log Tool (NLT) consists of the actual NLT in Paranal for content creation by telescope operators and night 
astronomers and the Garching Night Log Tool (gNLT) for content consumption by everybody interested in night reports, 
i.e. visitor and service mode investigators and various ESO departments. Until recently, reporting at the VLT was 
somewhat simplistic and required a lot of error-prone manual labor, especially towards the end of the night. The survey 
project helped also in pushing for a change in the reporting area, since the previous reporting facility was not able to 
generate reports for VISTA and VST since it was not able to interact with the new database schema. We took the 
opportunity to design a new comprehensive night reporting infrastructure from scratch, with a strong focus on 
minimizing the information that still needs to be entered manually and with the goal to seamlessly integrate into the 
existing workflows. Within the data flow infrastructure department (DFI), we are continuously promoting the usage of 
domain modeling as an approach to structural problem analysis (as opposed to only thinking in terms of the solution 
space / DB schemas). As already discussed, we also had to change technology to a modern and productive web 
framework respecting however our acquired competencies and investment in the Java space. After careful evaluation and 
prototyping, we established Grails as our new core web framework for the following reasons 

• Less Code - Grails is implemented in Groovy, an agile and dynamic scripting language with a syntax that is 
very intuitive for Java developers. It is significantly less verbose than Java such that we have to write, 
understand and maintain much less infrastructure code.  

• Shallow Learning Curve - Groovy fully leverages the existing Java APIs. Hence, the learning curve is very 
shallow for a Java developer. In fact, Java code is valid Groovy code and Java classes can be called from 
Groovy and vice versa. 

• Focus on Domain Modeling – Grails forces the software engineer to develop a clean domain model and to 
place this model in the center of problem analysis activities 

• Maintainability – Grails establishes a very clear architectural separation of model, controller, view and 
services such that code is well structured, readable, and maintainable 

• Rich Ecosystem – Grails is a mature web framework with a big and active community supplying many quality 
plugins that solve recurring problems in the web space, such that we do not have to re-implement commodity, 
i.e. non-astronomy specific problems over and over again 

• Huge Productivity Gain – Retrospectively, we can confirm that Grails delivers on the productivity promise. 
We are incredibly more productive compared to our previous framework without sacrificing software quality. 

With this new technology it was extremely easy to provide prototypes of the application and react to changing 
requirements. Based on an always running demo installation, agreed requirements were implemented and made available 
in the demo almost on a daily basis. Since the primary stakeholders to the NLT are located in Paranal, this was the 
perfect way to make sure that we are not only building the software right, but - much more important - that we are 
building the right software, i.e. we are truly adding value. Software development with this framework and the very 
intensive interaction with committed project scientists in Paranal providing frequent and proactive feedback were a truly 
motivating experience and the outcome is a highly usable, feature-rich tool developed with comparably little effort. 

 

 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

 
Figure 11: Night Report 

 
Figure 12: Detail of the report 

The main features of NLT / gNLT are as follows 

• Auto-generated night and day timelines of OB execution slots and downtime slots. Most of the time the 
telescope operator only classifies losses, add comments for ‘negative classifications’ and opens tickets 

• Instrument-specific Time Accounting (acquisition / science / calibration / standard stars) 

• Instrument/Mode-specific File Listings 

• Weather Reports 



 

 

 
 

*ddorigo@eso.org; phone +49 89 3200 6721; fax +49 89 320 2362; www.eso.org 

 

• Comprehensive Search and Statistics Facilities 

• Both Online and PDF Reports 

• Display of Observing Run Progress Pages to principal investigators 

• Configuration of report distribution profiles the send daily telescope reports in PDF to a defined list of email 
recipients 

• Filtered Visitor Mode Reports sent automatically whenever a principal investigator had visitor mode 
observations in the previous night 

10. CONCLUSIONS 

Thanks to the major survey project at ESO we have acquired comprehensive knowledge of the problem domain, 
technologies and exploration techniques that makes us confident to also face new challenges in the coming years. We 
learned a lot about process, domain modeling new techniques and we built a strong and very fruitful relationship with 
highly committed astronomers. Applying an iterative, incremental development process with frequent feedback from 
testers and customers, and a high degree of test automation have proven to be highly successful. All project participants 
enjoy that their feedback is taken into account much quicker and we made sure that we are actually building the right 
software and are thus adding value to ESO and the observatory. We do not expect perfect, stable requirements and 
consider joint requirements analysis with customers an integral part of our job and we encourage controlled change. 
Looking at the past some choices would have been different. The somewhat over-generic phase 2 database design has 
shown some challenges. In particular the mapping of new concepts into the database is possible but very complicated to 
manage at the mapping level. In NLT we used domain modeling techniques that have reduced the complexity of the final 
design of the domain. We are now investigating if domain modeling should also be adopted more extensively for future 
projects. Another lesson that we learned is to avoid a big bang approach. We have reduced the risks of failures with the 
incremental deployment of tools starting with VISTA, then VST, then UT2 and finally all telescopes. Another area in 
which we are analyzing future improvements is P2PP. New requirements like nested scheduling containers - e.g. time 
links of contatenations - are very difficult to implement within the current client/server architecture. With the ubiquity of 
internet, the now obsolete P2PP requirement of having to work offline introduced enormous accidental complexity of 
custom transaction management and failure/resume handling when checking in/out OBs and containers. From today’s 
point of view, we would build a P2PP 4 with support for nested containers as a modern web application where our 
framework of choice is definitely Grails. 

REFERENCES 

[1] Chavan A. M., “A Front-end System for the VLT's Data-Flow System” 
Proc. SPIE 4010, 81 (2000) 

[2] Bierwirth T., New Observing Concepts for ESO Survey Telescopes 
Proc. SPIE 7737, 77370W (2010) 

[3] VISTA – Visible and Infrared Survey Telescope for Astronomy (ESO Website) 
http://www.eso.info/sci/facilities/paranal/instruments/vista/ 

[4] Rejkuba, M., “Phase 2 Proposal Preparation Tool for Surveys – User Manual”, ESO, 
http://www.eso.info/sci/observing/phase2/P2PP/P2PP3Documentation.html  

http://www.eso.info/sci/facilities/paranal/instruments/vista/�
http://www.eso.info/sci/observing/phase2/P2PP/P2PP3Documentation.html�

	1. INTRODUCTION 
	2. BRIEF HISTORY OF PHASE 1 / 2
	2.1 Phase 1 Evolution
	2.2 Phase 2 Evolution

	3. THE SURVEY PROJECT
	4. SCHEDULING CONTAINERS
	5. CURRENT PHASE 2 INFRASTRUCTURE
	6. NEW PHASE 2 DATABASE AND REPLICATION
	7. P2PP, HIBERNATE AND SPRING
	8. OT RANKING VERSUS SCHEDULING 
	9. NIGHT LOG TOOL AND GRAILS
	10. CONCLUSIONS

