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ABSTRACT

Segmentation of telescope’s primary mirror creates quasi-static speckles in an image. These speckles are
impediment for the detection of faint structures around stars, for instance exoplanets. An elaborated post-
processing method is required to improve the detection level. The Stochastic Speckle Discrimination (SSD)
method developed for this purpose uses statistical variability of intensity to distinguish between planets and
speckles. To calculate the efficiency of SSD we derive analytical expressions for mean and standard deviation of
point spread function (PSF) produced by segmented pupil. The expressions are general for any point in the
image plane, but there is a difference in statistical behavior for the central point and for the off-axis point. In
particular we show that a modified Rician distribution is inapplicable to describe on-axis intensity. In the last
section we calculate the level of primary mirror phasing required for the efficient use of SSD.
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1. INTRODUCTION

Primary mirrors of some large modern telescopes consist of segments. Depending on the diameter of the
primary, the number of segments varies from 36 (Keck' , GTC?) to 800-1000 (EELT?, TMT*). The segments
constantly move; they shift in the direction outside the optical surface (piston, tip and tilt aberrations in terms of
Zernike polynomials) creating a randomly blazed diffraction grating.’ Image formed by such a grating is
diffraction pattern plus a field of random speckles (Figure 1). The active control (phasing) reduces the amplitude
of the segments’ shifts but there are always some residuals. As segments move the image pattern changes, but as
these movements are slow (compared to the changes caused by the turbulent atmosphere) we speak about quasi-
static speckles. These speckles are not fast enough to be averaged-out by long exposures, and are not static
enough to be removed by calibration. Size of the speckle is defined by the primary mirror diameter, as well as
the size of any non-resolved object. The quasi-static speckle looks pretty much like a non-resolved companion
and can be mistaken for one.

Several facts help distinguish between a speckle and an object.
Firstly, the object rotates with the field and speckles rotate with the
pupil. This is the principle of the angular differential imaging method
for detection of exoplanets. Secondly, spectral features of the object are
different from the parent star’s and hence from the speckle’s. Spectral
differential imaging relies on this difference. Thirdly, as we already
mentioned, speckle fluctuates more than the object. This is the principle
of stochastic speckle discrimination (SSD)°, which we consider
throughout this paper.

If the mirror is completely de-phased (amplitude of the segment
shift is close to the imaging wavelength), the image consists of speckles
only, and the central core disappears. Obviously in this case the central
pixel of the PSF fluctuates as much as any other pixel and statistics-
based discrimination is inapplicable. The question we want to answer in
this paper is: Up to which level of phasing is the SSD method efficient?
For that we have to derive not only the mean value of the PSF, but also
the measure of its fluctuation, i.e. standard deviation.

Figure 1. Simulated “instantaneous”
image from a segmented telescope:
central core, speckles and diffraction
peaks.
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2. STATISTICAL MOMENTS OF INTENSITY
2.1. Mean value

We consider a segmented pupil composed of N identical segments. For simplicity we assume that segments
have random piston values. The complex amplitude in the image plane is:>’

1 N
Ulw)= t(w)-ﬁzgexp(ikwrj)exp(iﬁj) (1)
=
where t(w) is a complex amplitude of one segment, w is a coordinate in the image plane, r; is position of the
center of a segment with index j, 3, is phase value associated with segment /, and k is the wavenumber. Intensity
is the modulus square of the function U (w) Assuming §;to be independent and identically distributed (i.i.d.)
the mean of intensity is a sum of normalized PSF from a perfect pupil, 7.(w), and a halo 7, (w):

(1)w)=1.(w)+1,(w). ©)

Here () represents statistical mean and
)
L0w)=atlgr G ol s 1) == 3
where g, =<exp(i8 j )> and
1 N
&f (w)= > explikowr) @
N o
is the Fourier transform of segmentation grid — a grid factor. Notice than in absence of phase errors a; =1, halo
disappears I (w)=0, and I,(w) becomes the PSF from a perfect pupil /, (w)=|gf (w12|t(w12. Functions

|t(w)2 and |gf (wl2 are shown in Figure 2 for one-dimensional telescope. Functions gf (w) and t(w) are

normalized such that at the central point gf (0) =#(0)=1, so that the mean intensity at the central point is:

1-a}
N0)=af +—. (&)
(1)0)=a7 + ¢
This value is often associated with the Strehl ratio.’ 1.0
Parameter @, depends on the statistical distribution of 3. W)
If 3, are normally distributed with zero mean and standard 0.8 —lgfw
: —lg2w)l

deviation o then a; = exp(— o’ / 2) ; for uniform distribution

in interval [—G 3, cx/g] a1=sinc(x/§c). If 5, are 061
distributed uniformly between +m (for Gaussian ]
distribution it means that ¢ >>1) 4, =0 and <I > turns

into PSF of a fully de-phased pupil:

2
t\w
- ©®
N 00 # b,
Represent.ation'of mean inte?ns.ity as a sum of two i = o 5 19 15 4o
terms (Eq.(2)) is valid for any statistical distribution of 5, distance, 2D

Figure 2. Functions included in
expressions for the moments. D — pupil
need to be small or large. The only assumption made is the diameter, A - wavelength, N=20

i.i.d. nature of the segments’ aberrations.

and for any number of segments. The values §; do not
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2.2. Standard deviation

To derive standard deviation of intensity one has to calculate averages from a quadruple sum:

N N NN
I exp(— ikwr, )exp(ikwrp )exp(— ikwr,, )exp(ikwrj )<exp(— id, )exp(iS » )exp(— iS,, )exp(i6 ; )> 7)
Jj=lm=1p=1g=1
According to Appendix B of classic book by Goodman® 15 cases must be considered to calculate the averages
like Eq.(7). Our situation is somehow more complicated than the one from the afore-mentioned book because

Eq.(7) contains field-dependant terms exp(ikwrj . Following Goodman’s scheme we have made this exercise

and arrived at the final expression:

ot (w)= [ ;‘\;)' [% +oylgf w} + 0L, |gf 2w1 +ots|gf w)| gf2w} (8
where
=(1_a12)2 N 2(a2 a ) [(l+a2) 20112]2 ’
N
2
a1=2af{1—af—2(l+“]2\2_2”1 } ©)
az —alz 2 2
o, = N , o5 =2a; (az—al).
Functions |t(w)|2 , |gf (w)I2 and | of (2w)|2 are shown in Figure 2. A new parameter appeared:
a = (exp(i23, ). (10)

For normal distribution a, = exp(—26%) = a14 ; for uniform distribution a, = sinc(Z\/EG).
For the central peak gf (O) = t(O) =1 and Eq.(8) gives:

1 (o

2 0

c;(0 +oy o, +ao
10) N(N 110 3)

_N-1

(1)
L4202 (N =2)a, +1)+ a2 —24¢ 2N -3)].

The result for o, (0) coincides with the expressions (3-91)-(3-92) form the Reference® if one sets all lengths of
random phasors to l/ JN .
Now, let us restrict the phase distribution to normal and express o7(w) through 7, and/, . With the help of

identity (1 +a, )— 2a1 = (1 —aj )Z , which is valid for normal distribution, the combination of terms yields:

2 2
20V 2 () 1 ] 12 l=at) o N 1-af gfew) | s (12)
G; (w)— I; (w 1 N[ N ] +21, (w)[s (w)[l 2 N J+ I (w{l N |gf(w12 I (w)

We have assumed that for symmetric pupils gf (2w is real and therefore | of 2w} =gf 2(2w). For 6>>1:

N0 F (13)

In this limit the speckle contrast is independent of the position in the focal plane:

G,(w) f 1
C=<[>(w)—> 1_W' (14)

as it must be for the developed speckles with a finite number of phasors.’
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Expression (12) contains many terms and in the next sub-section we will simplify it. The location under
investigation w dictates the manner of simplification which is different for the central point and the diffraction
peaks compared to the other locations.

2.3. Approximations for o

2.3.1.  Beyond the central point and the diffraction peaks
Outside the peaks (cf. Figure 2) functions | of (wx2 and 7, (w) decrease as N > with the number of segments. In

Eq.(12) we neglect all terms which decrease faster than N- 3, i.e. all terms containing N*

G%(w)zlz(w 1-

N

2
Sl +21,(w)l,(w).  (“approximation 1) (15)

For small standard deviation of phase & or for large N the second term in rectangular brackets can be neglected
and the expression becomes identical to the one derived from the modified Rician distribution

or(w)~1? (w) +21 (w)] ¢ (w) . (“Rician approximation”) (16)
Modified Rician distribution describes statistics of intensity for a random phasor sum plus a constant phasor. It
was derived for the case of infinite number of phasors.® In our case the number of segments is limited. Figure 3
shows standard deviation calculated by exact expression, by approximation 1, Eq.(15), and the Rician
approximation, Eq.(16).
Figure 3 left panel: even for relatively small number of segments there is a good agreement between the exact
expression and approximation 1 outside the peaks (at 0 and at0.51/d , where d is size of a segment). Figure 3
right panel: there is almost no difference between approximation 1 and the Rician approximation up to
o ~ 0.8 rad; beyond this number Rician approximation saturates to the wrong value. Approximation 1 gives the
correct saturation value. Both approximations work as long as 6 <A/8, i.e. for Strehl ratios higher than 50%.

0.25 0.25
- exact
I excact Y appriximation 1 N=4
0.20- approximation 1 0.204 approximation Rician
w=2.2 /D
N=10 c=0.7rad i
0.151 0.151
0.101 0.101 N=10
0.05 1 0.05 1
0.00 +— — 0.00 — T
0 9 10 0.0 0.5 1.0 1.5 20 25 3.0
distance, 7./D o, radians

Figure 3. Standard deviation of intensity: exact expression, Eq.(12) (black), approximation 1, Eq.(15) (red), and the
Rician approximation, Eq.(16) (blue). Left panel: angular dependence. There is no discernible difference between the
two approximations for the case presented in the left panel, i.e. for 6 = 0.7rad, and for this reason we did not plot the
Rician approximation there. Right panel: dependence on the phase error rms value. D — pupil diameter, A -
wavelength. All curves are computed for a one-dimensional telescope.
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2.3.2.  Central point
At the central point gf’ (0) = t(O) =1, function/, = al2 is independent of NV, and I, = (1 - a12 ) N . In order to have
the same N~ precision we need to keep all the terms. Eq.(12) can be re-written as
67(0)= 12— NI} +211, 41 17 2121, +121} (17)
Rician approximation, Eq.(16), does not work here: the term 27_./, has the same o’N™! dependence as the term

2171, so we cannot keep one without keeping another. In the same manner, terms 4[CIS2 and 7 Czlf have the

cTs

same N> dependence as the term 52 , so all three have to be kept or removed simultaneously. If we keep

only the 6’ N terms the expression can be simplified:
o7(0)~21.1,(1-1,) (18)
By construction this approximation works only for large N and smallc. For large o, when the difference

between all the points of the image is smeared, Eq.(16) can be used for the central point. Figure 4 shows the
exact curve, and the two approximations for standard deviation of intensity in the central peak.

0.10

- —cxack Figure 4. Standard deviation of intensity at the
! appr_o“:fmatfo" 1 central point and the diffraction peaks (black).

0.08 4 approximation Rician N=60 (1D case). Rician approximation (blue)

N=60 provides a good fit only for large 6. For o <i/4

0.064 Eq.(18) provides a good fit (red), while Rician
' approximation is inapplicable.

0.04

0.02 + |

0.00 T T T T T T T T

L) T ' T
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G, radians

As a side remark we want to mention that the curves in Figure 4 can be used to predict the performance of
“lucky imaging” across the range of Strehl ratios delivered by compensated telescopes.'

2.3.3.  Diffraction peaks
If the mirror surface is affected by piston aberrations only and if there are no gaps between segments then
t(wpeak ): 0 . The intensity in these points is also zero. If there are some additional aberrations as, for example,

segments’ tip-tilt or defocus and/or the segments have gaps between them t(wpeak )7& 0 and gf (wpeak)zl . We

2

introduce 7, :|t(wpeakl — intensity of the peaks in the absence of piston errors. From Eq.(3) we see that
Ic(wpeak): L ear! . (0) and 1, (wpeak ): 1 pear L (0). From Egs. (2) and (12), keeping in mind that
gf(wpeak)z gf(preak)z 1 we obtain:

<1>(wpeak ): [peak <1>(O) > Op (wpeak ) = Ipeakcl (O) . (1 9)
In the diffraction peaks mean and standard deviation of intensity are normalized versions of their counterparts in

the central peak. All set above concerning the central peak is valid for the diffraction peaks taking into account a
normalization factor. Contrast in the diffraction peaks is equal to contrast in the central peak:
_ 51 Wpeu) 0, (0)

09 et )= o)~ 100 = C(0). (20)
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3. STOCHASTIC SPECKLE DISCRIMINATION

3.1. Introduction

Consider a star-companion system seen through a segmented telescope. The companion looks like a speckle, but
its intensity follows the statistics of the central peak of the PSF, while the speckle’s intensity behaves as an off-
axis point of the PSF (unless it is the diffraction peak which then behaves similarly to the central peak too — see
Eq. (20)). To distinguish between speckle and the companion we calculate the inverse of variability for each
pixel on a set of images. This method has been proven on real adaptive-optics images for non-segmented
telescopes (Figure 5).'' Below we calculated the efficiency of SSD for segmented pupils.

If during two sequential exposures the configuration of segments changes sufficiently the corresponding
images represent two independent realizations of the intensity field. We utilize the intensity statistics rather than
the integral intensity. If we assume that the phase errors are small, we expect the variability of a candidate source
to be less than the variability of a speckle.

Figure 5. Demonstration of the SSD method on adaptive-optics data recorded with the 3m Shane Telescope at the
Lick Observatory. Five artificial companions were inserted in the dataset. Left: shift-and-add image, center: SNR-
map, right: beam ratio map. Strehl ratio was 50%. Images are displayed on the linear scale; the central parts are
deliberately saturated to bring out the faint speckle structure outside the PSF core.

3.2. Signal-to-noise discrimination metric

One of the possible metrics for planet-speckle discrimination is signal-to-noise ratio (SNR):
SNR=(I)/o; . 2n
For SSD method to work SNR for the central point must be higher than for the speckles. Looking at Equations

(3) and (8) we notice than SNR is independent of the segments’ shape. The efficiency of SSD based on the SNR
metric is:

£ _ SNR(0) _ (1)(0)/s,(0)
P SNR(w)  (1)w)/o, ()

Basically Egy, is equivalent to speckle contrast normalized by its value at the origin. Figure 6 shows Eg, for a

(22)

one-dimensional telescope. Left panel: Egy;, is higher between the rings of the diffraction-limited PSF. On the
rings Egyy is lower. It is not surprising because the presence of the non-negligible deterministic part of the PSF
makes SNR(w) larger. Between the rings, as well as for large angular distances E gy, is maximal and constant.

In these areas the deterministic part of the PSF is zero, and it is easy to show that speckle contrast and hence
SNR is independent of the position in the focal plane. By definition, because we neglect the speckle contribution
under the planet, its signal-to-noise ratio is SNR(0) and it does not change with position. Therefore oscillations in
the curves are the result of change in SNR(w) only. Maximum value of E g is obtained for the smallest value of
SNR(w) because SNR(0) is constant. To obtain this minimum value for SNR(w) we limit ourselves to normal
distribution of segments’ errors and substitute 7, (w) =0 in Equations (2) and (12).
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SNR(W) i = [1 —(1 —a%)z /NT/2 : (23)

The corresponding maximum in E gy, is computed with the help of Equations (5) and (11) (assuming Gaussian
statistics for phase errors):

B 1—a12+Na12\/ N-1+24%—a? o

Esng max = :
" i—af NN =1\ 2Na? +1-24? +af
where af =exp(-c7). E sNRmax 18 increasing with N, demonstrating that increasing the number of segments
improves the efficiency of SSD. For large N one can use the following asymptotic:

Evpmax A JN, N>>1.
SNR,ma \/—1 p: (25)

Egng max drops fast with o (Figure 6 , right panel). We wish to know a limiting value of o for which Egyp 10y 18

higher than a certain level M. Solving Eq.(25) with respect to al2 we obtain:

e ale N NN . (26)
am” Nam \am

Putting for example M = 10 results in Gy, = 0.7rad (When N = 50), Gy, = 0.83rad (when N = 100), and 6. =
1.4rad (when N = 10000). That is denser segmentation permits higher phase errors at which SSD still works.

|

18

] N=20 i 5 5
£ 164 10 w=0.2/d=4)/D
SNR | 3
144 &=0.5 rad, St=80%

124

104

o =0.8rad. St=35%

o= 15rad, St=15%

0 L T i T . T r T T T X T I T
0 1 2 3 4 5 6 7
distance, »./D

Figure 6. Efficiency of SSD based on the signal-to-noise metric. Left panel: angular dependence. Right panel:
dependence on the phase error’s standard deviation. D — pupil diameter, A - wavelength, one-dimensional case.

25

o, radians

3.3. Beam ratio discrimination metric

Another metric is the so called “beam ratio” usually denoted as 7. On the set of images it is calculated from mean

and standard deviation:'!
2 G2
,/ 1) o7

- . (27)
e
It is easy to show that the two metrics are related:
VSNR? ~1
r= . (28)

SNR —/SNR? —1
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The efficiency of the beam ratio metric is again defined as the ratio of its value in the central peak to its off-axis

value:
r0
g =10 (29)
r(w)
The metric is constructed so that for the modified Rician distribution (see Eq.(16)) it equals I, (w)/ I,(w). For

Rician distribution the theoretical efficiency of the beam ratio metric between the rings of the diffraction-limited
PSF (where ,(w)=0) is infinite. For a limited number of segments, where o, (w) follows Eq.(15), E, between

diffraction rings is less than infinity, but still much higher than Egy, (see Figure 7, unlike Figure 6 it has a
logarithmic scale). E, oscillates much stronger in the field than E g, : the difference between the on- and the
off-ring positions is 1-2 orders of magnitude.

10¢ 4 ¥=20 5=0.5 rad. S=80%
El‘/ESNR central obscuration 15%
Er ] 1 first Airy ring
10°4 ] ——N=36
3 =08 rad, St=35% 10°4 —— N=60
107 5
o=1.5rad. S=15% 10' 4
10" 5 - ]
10° — T T T T T T T T T T T 0
0 1 2 3 4 5 6 7 10 - . - T - T - T -
distance, 1/D 0.0 0.5 1.0 1.5 20 25
! o, radians
Figure 7. Efficiency of the SSD method based on Figure 8. Ratio between the two metrics for the first
the beam ratio metric. D — pupil diameter, A - Airy ring of a two-dimensional circular telescope with
wavelength, one-dimensional telescope. 15% linear obscuration ratio and hexagonal

segments.

Obviously E, is the preferred metric for detection between the rings. It is interesting to compare these two
metrics for the position on top of a ring, i.e. in the minima of E, and Egy which corresponds to the maxima of
1, (w) For that we consider a circular telescope with diameter D and a central obscuration of size 0.15D. The
position of the first Airy ring is 1.63%/D . The value of the diffraction-limited PSF at this point is 0.0245. We

assume that this pupil is composed of hexagonal segments. On the fist Airy ring the segment PSF can be
approximated as’

2.2 44
|t(w12zl—in w 209 n'w

+ 30
18 N 6480 N2 30)
where w is modulus of w in A/D units. Substituting w=1.63 for the first Airy ring we obtain
1-af (, 728 22.18
1.(w)=0.02454a I(w) s —L 1= : 31
c( 1) 1 S( 1) N ( N N2 J ( )

Substituting Eq.(31) into Equations (2) and (15) we calculate the moments and afterwards the metrics. The ratio
E,/Egyy for the first Airy ring is plotted in Figure 8. Here the beam ratio metric also works better. Notice that

for a range of ¢ from 0.5 to 1.5rad the ratio is practically constant and it equals approximately 14.
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4. DISCUSSION

We obtained general expressions for the mean and standard deviation of intensity when the image is formed by a
segmented pupil. The two moments can be expressed through the normalized diffraction-limited PSF for the
whole pupil and the PSF for a single segment. The moments behave differently depending whether the
considered point in the field falls on locations of the peaks or on another location. In a limit of large number of
segments the standard deviation of the off-peak intensity can be approximated by the expression obtained from
the modified Rician distribution. Nevertheless we did not prove that in this case the intensity distribution is
modified Rician. Standard deviation of central point and diffraction peaks’ intensity cannot be approximated by
this expression, which proves that the intensity at these points does not follow the modified Rician distribution.

Based on the developed formulas we calculated two metrics for stochastic speckle discrimination: signal-to-noise
and beam ratio. We find that even on top of the Airy rings beam ratio provides better results than signal-to-noise.

In the paper we considered statistics of the image formed by a
segmented pupil. Nevertheless, often in literature the residual
wavefront after adaptive optics (AO) correction is considered
as being composed of a large number of independent cells.'* To
some extent the phase within a cell can be considered constant.
The size of a cell is defined by a correlation length of the phase,
which is related to inter-actuator distance. The actuators
geometry is usually square. The diffraction peaks of the grid
factor correspond to the so-called “waffle mode”. This
representation is especially valid for a high order AO with large
number of actuators (extreme adaptive optics). Figure 9 shows
the reconstructed wavefront from High Order Testbench
(HOT)" with residual wavefront rms value of 40nm and the
Strehl ratio of 88%. The phase errors are created by artificial
turbulence. The cells of the wavefront are clearly seen. Based
on this observation we claim that the material presented in this
paper is equally valid for the residual phase after AO
correction. The expressions and approximations for statistical
moments, as well as for the SSD metrics are applicable to this
type of images.

Figure 9. Reconstructed wavefront from
the High Order Testbench, after AO
compensation. Strehl ratio = 88%.
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