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A BST R A C T  
The shape correction of the mirrors is a crucial operation to obtain diffraction limited images in actively 

controlled telescopes. If the mirror is not monolithic, the segmentation errors introduced by piston, tip and tilt of the 
segments are superimposed on the continuous aberrations. In the case of a sensor based on the measurement of the 
wavefront slopes, like the Shack-Hartmann wavefront sensor, an algorithm which allows separating the different 
contributions is necessary for a proper correction. In the framework of the Active Phasing Experiment (APE) carried out 
at ESO, we have developed an algorithm to compute the continuous aberrations and the tip-tilt coefficients based on the 
modal wavefront reconstruction. The description of the algorithm and some examples in the cases of low-order 
aberrations superimposed on tip-tilt misalignment of the segments are reported, with particular emphasis about the effect 
of the use of a non-orthogonal set of basis functions. The precision achievable with the Shack-Hartmann sensor in APE 
at VLT and in the case of the European Extremely Large Telescope (E-ELT) is computed and the expected upper limits 
for the residual errors after correction are finally estimated. 
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1 . I N T R O D U C T I O N 
The diffraction limit is the ultimate dream of the astronomer who wants to improve the spatial resolution of large 

telescopes. A diffuse technique implemented to achieve this limit consists in the correction of the shape of some 
reflecting surface in order to minimize the aberrations and restore a corrected wavefront. In the case of a segmented 
telescope the difficulties increase because the number of optical components to be controlled grows. 

Guido Horn d’Arturo, Italian astronomer who lived during the XX century and was, for many years, director of the 
Bologna Observatory, faced up to these difficulties when he tried to correct the spherical aberration produced by the first 
segmented telescope in human history (Horn d'Arturo, 1950); his telescope, named “Telescopio a tasselli”, consisted of 
61 identical spherical segments with hexagonal profile, forming a primary mirror with an approximate diameter of about 
1.8m; he made the correction by lifting up the segments by an amount depending on their radial distance from the central 
segment, in order to make the focal planes of each segment coincident; that correction allowed him to obtain images of 
zenithal stars with a spatial resolution of 5.6 arcseconds at the prime focus. 

Today, more than half century after the realization of the first segmented telescope, we have a sufficiently 
developed technology to achieve the diffraction limit on segmented telescopes which are one order of magnitude larger 
than the “Telescopio a tasselli”: currently displacement sensors and position actuators are able to measure and correct 
misalignments and deformations downto the level of nanometers over aperture ten meters in diameter (see Chanan et al., 
1998). 

One of the most common method used to compute the correction makes use of the Shack-Hartmann wavefront 
sensor (see Platt & Shack, 2001 for a description of the history and the historical note in Neal et al. 2002, pp. 149 about 
the naming convention). 

The Shack-Hartmann sensor is widely used for the wavefront correction in the telescopes with monolithic mirrors. In 
this paper we want to present the extension of the use of this sensor to the case of a segmented telescope and to propose 
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an algorithm for the wavefront reconstruction based on the modal reconstruction method; we will in particular tackle the 
problem of disentangling the continuous aberrations from the modes which are originated by the segmentation. 

It is important to point out that the Shack-Hartmann sensor is actually a slope sensor, i.e. it is insensitive to piston; 
when the wavefront comes from a segmented surface, such a sensor cannot tell anything about the piston displacements; 
a modification which allows the detection of the relative piston step between adjacent segments has been succesfully 
introduced at the Keck telescope (Chanan et al. 1998) and is now adopted in SHAPS within the APE experiment (see 
section 3.2 and Mazzoleni et al. at this conference): in that case one lenslet is located in between adjacent segments and 
the shape of the signal is considered rather than the centroid of the spot. In the following section we will concentrate our 
attention to the “classical” Shack-Hartmann and we will exclude the measure and correction of the piston displacements. 

2 . A L G O R I T H M  D ES C R I P T I O N 
2.1 The extended base of functions B for the wavefront shape 

Let W(x) be the continuous d-dimensional (d=1, 2) real function defined over a d-dimensional pupil P which 
describes the wavefront error after the reflection on a monolithic d-dimensional  mirror.  Let’s  assume  that  exist  a 
countable set of functions {Zn(x): P} which form a complete orthogonal base in the space of W(x); in the case of a 
circular 2-dimensional pupil, {Zn(x)} might be, for example, the Zernike RMS-normalized polynomials (that’s why the 
name Zn has been chosen). W(x) can be expressed in a unique way as a linear combination of the base functions, as 
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where P is pupil and < f | g >  indicates the inner product between the functions f and g. 

Let’s assume that for n ≥ N, the coefficient an is negligible so that the previous sum can be truncated to N: 
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Note that the orthogonality of the {Zn(x)} is, in general, not conserved over a discrete set of points. 

The same set of function can be used to describe the wavefront reflected by a non-continuous surface (e.g. a 
segmented mirror); but, in this case, the reconstructed wavefront (and, consequently, the applied correction) might be not 
accurate due to the limited number of terms used in the 
reconstruction. The following Figure 1 illustrates qualitatively this 
problem in the 1-dimensional case, which refers to the case of a 
segmented mirror consisting of 3 segments with the central one 
lifted up. The wavefront after the reflection is outlined in 
continuous line. The reconstructed wavefront, approximated using 
the first 25 Zernike polynomials (dashed line), does not exactly 
correspond to the real one; this discrepancy might induce the 
wavefront correction system to apply a wrong correction: for 
instance, it might correct with a tilt the external segments in order 
to match better the reconstructed wavefront. 

In order to solve this mismatching, we propose to extend the 
set of continuous functions {Zn(x)} with a set of non-continuous 
functions {Smk(x)} (hereinafter called also “single segment modes” 
of the segment k) which are real functions defined over P but are 
equal to 0 outside the segment k.  

 

 
F igure 1: Piston approximation with the first 

25 Zernike polynomials. 



For instance, in the 1-dimensional case, S1k(x) and S2k(x) can be defined using the Zernike polynomials as: 

elsewhere
kSegmentxif

xS j
jk








0
1

)(1   
elsewhere

kSegmentxifxx
xS jkj

jk





 


0

)( 0
2  

where x0k is the coordinate of the center of the segment k. The single segment modes S1k(x) and S2k(x) correspond to 
the piston and to the tilt of the segment k respectively. 

We assume that the first M non-continuous functions are sufficient to describe accurately the segment shape. With 
the new extended set of functions B≡{Zn(x), Smk(x)} , the following approximation for the wavefront can be used: 
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where M is the number of non-continuous functions and K is the number of segments. 

 

2.2 The extended base of functions !" for the wavefront slope 

The Shack-Hartmann sensor measures the local slope of the wavefront, i.e. the derivative of the wavefront with 
respect to the spatial coordinates in the plane of the detector. It is then necessary to reformulate the wavefront 
reconstruction formula (1) in terms of the derivatives and for this we need to define a new set of basis functions B’. 

The derivative of the wavefront error represented by (1) with respect to the i coordinate can be written as: 
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Note that the piston modes (the segment piston S1k and the global piston Z1, if Zernike polynomials are used) have 
been removed from the sum because they cannot be detected by the Shack-Hartmann sensor being their spatial derivative 
equal zero. Note also that the derivative of the non-countinuous functions is not defined at the segment borders but this 
fact can be ignored if the sampling points are inside the segments. 

Among the plethora of possible choices, it  seems  “natural”  to  build  the  new  set B’ using the derivatives of the 

functions defined in B, i.e. B’≡{ 


Zn(x), 


Smk(x)}, where each derivative is a d-dimensional vector of functions (that is 




Zn(x)= {  iZn (x)}, where i indicates the coordinate along which the derivative is computed).  

The following points can be noticed: 

- The new base B’ is “naturally” defined from B in the sense that each function in B generates one function in B’ 
(a pair of functions if d=2). 

- Each function which can be described in B, can be derived within each segment and its derivative can be 
described in B’ using the same coefficients an and bmk (piston modes excluded). 

- If the functions in B are linearly independent and the piston modes are excluded, then also the derivatives 
(considered as pair of functions if d=2) are linearly independent. Orthogonality, in general, is not conserved (see 
Noll, 1976 for case of the Zernike polynomials). 

2.3 O rthogonalization. 

Using the same notation of the previous paragraph, let  )(),( jmkjn xSxZBB 
 . We assume that the 

functions computed over the points {xj} are linearly independent and that the piston modes have been removed from the 
original base B.  

We can now define a new set of base B” derived from B’ with an orthogonalization procedure, e.g. the Gram-
Schmidt procedure. From each function F’i (i=2,..N), selected with a specific order, a new function F”i is derived in the 
following way: 
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With this definition, each new function F”i is orthogonal to the F”j with j < i. 

The orthogonalized functions F” depend on the order in which the functions F’ are listed; a proper choice of the 
order will reduce the computational effort needed to obtain the orthogonalized set. However the choice of the order will 
have no influence on the final results, i.e. the coefficients of the functions in B’ will be the same independently of the 
chosen order. 

To visualize how the choice of the order affects the orthogonalized set of functions, let us consider a simple case, 
with d=1 (mono-dimensional) and K=3 (3 segments). 

Let B≡{S2k, Z3}k=1..3, i.e. the 3 segment tilts plus global defocus defined over P=[-1, 1] as listed in the following 
table together with their derivatives. The function ),( Sx , where x is a point and S a interval, is defined as being equal 
to 1 if x belongs to S, otherwise it is equal to 0. 

Function descr iption Definition Der ivative 

Tilt of the first segment    ]3/1,1[,3/2)(21  jjj xxxS    ]3/1,1[,)(21
'  jj xxS   

Tilt of the second segment  [3/1,3/1],)(22  jjj xxxS    [3/1,3/1],)(22
'  jj xxS   

Tilt of the third segment    ]1,3/1[,3/2)(23  jjj xxxS    ]1,3/1[,)(23
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The 4 derivatives {S’2k, Z’3} in B’, are plotted in the following graphs:  

 

 
F igure 2: Der ivatives of the segment tilt and global defocus. 

 
If the order in B’ is {S’2k, Z’3} than S”2k= S’2k and only the function Z”3 in B” will be modified by orthogonalization: 



 
F igure 3: Function Z”3 after orthogonalization of {S’2k, Z’3} . 

 
It is interesting to note that Z”3 is the function which describes to the so called “scalloping effect”. 

On the contrary, if the order in B’ is {Z’3, S’2k}, than Z”3= Z’3 and S”22= S’22 while S”21 and S”23 will be modified in 
the way plotted in the following graphs: 

 
F igure 4: Functions S”21 and S”23 after orthogonalization of {Z’3, S’2k} . 

 
To simplify the reading, we introduce now a new notation. Let B’≡{fi}i=1..N be the base system for the wavefront 

slope and let B”≡{f’i}i=1..N be the base system obtained after orthonormalization. 

Let M be the square matrix of order N which represents the transformation T: B’→B”: 
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If B’ is composed of linearly independent functions (as assumed), M is non-singular, it can be inverted and we can 
write: 
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2.4 Computation of the solution. 

The equation (2), which expresses the derivative (or the derivatives) of the wavefront at the point xj can be written as 
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where D


is the J·d–dimensional column vector of the displacement measured by the Shack-Hartmann sensor just 
defined, a  is the unknown N-dimensional column vector of the coefficients of the basis functions {fi} and F  is the 



J·d×N (sensors  × modes) matrix which represents the linear transformation; the elements of i-th column of the matrix F  

are the J·d values of )( ji xf 
; in the 2-dimensional case F is: 
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where the x and y indices indicate the coordinate of the derivative. 

When J·d > N, this linear system described by (3) is over-determined. In general, it is possible to find a solution for 
the vector of coefficients a  in a least-squares sense, i.e. with the property of minimizing the modulus of the residual 

error aFDE 
 . This solution can be obtained in many different ways, for instance via Single Value 

Decomposition (SVD). If, as in our case, the matrix F  has been orthogonalized into F’, then the solution can be found 
simply computing the projection of the displacement D


onto the orthogonalized basis vectors and then computing the 

component in the original basis multiplying by means of the inverse of the matrix M: 
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where F~ has been introduced to indicate the pseudo-inverse of F . 

2.3 E r ror evaluation. 

The uncertainties a can be evaluated starting from the error in the measurement of D


, which is the precision of the 
centroiding. For simplicity we assume that the precision is equal to a constant  for all the spots. If the spatial 
distribution of the intensity of a spot follows a Gaussian profile, then photNFWHM  35.2 , where FWHM is the 

Full Width at Half Maximum of the intensity distribution and Nphot is the number of photons detected.  

The uncertainties a can be computed with the error propagation formula in the linear system theory. Starting from 

the modes-sensors matrix F , the precision matrix E can be computed as   1
 TFFE . The variance of the coefficient of 

the mode i can then be expressed as 
22  iii Ea  , 

where we have assumed that the centroiding errors of the individual spots are uncorrelated. In general, the element ij 
of the precision matrix E is the covariance between the modes i and j; if the modes are orthogonal, Eij =0  when i≠j.  

The residual wavefront RMS over the full aperture can then be estimated taking into account the weight of each 
mode and the covariance between different modes. 

3 . A PP L I C A T I O N T O  1-D A N D 2-D C ASES 
3.1 The 1-dimensional case. 

We first look at an example in the 1-dimensional case because it demonstrates how the algorithm works. 

We will use the same modes as defined in the previous example of section 2.3; the segments are 3 and the modes are 
the 3 tilts and the global defocus; we assume that the wavefront is sampled at 6 different points, two per each segment, at 
the positions defined by [r1, r2, r3, r4, r5, r6]. 

The modes-sensors matrix F  and the F F T matrix are the following: 
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In the matrix F, rows correspond to the modes while columns correspond to the sensors. 

We consider now two cases, a first one with equally spaced sampling points, that is [r1=-5/6, r2=-3/6, r3=-1/6, r4=1/6, 
r5=3/6, r6=5/6] and a second with non-equally spaced sampling points, that is [r1=-6/6, r2=-5/6, r3=-1/3, r4=1/3, r5=5/6, 
r6=6/6], indicated by the small triangles in the Figure 5: 

  
F igure 5: Sampling points for the two cases illustrated in the text. 

 
The precision matrices E =(F F T)-1 for the two cases are : 
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From the precision matrices, we can extract the variances of the modes and summarize them in the following table: 

Mode Equally spaced sampling Non-equally spaced sampling 

Tilt first segment 3.17 σ2 3.86 σ2 

Tilt second segment 0.5 σ2 0.5 σ2 

Tilt third segment 3.17 σ2 3.86 σ2 

Global defocus 0.37 σ2 0.25 σ2 

 

The following observations can be pointed out: 

- the variance of the tilts of the outer segments is higher than the variance of the tilt of the central segment; this is 
due to the fact that the tilts of the external segment are correlated to the defocus mode: the presence of this mode 
affects the precision with which the tilts can be estimated;  

- the variances change depending on the geometrical distribution of the sampling; in the second configuration the 
variance of the defocus mode is reduced, but, at the same time, the variance of the tilts of the outer segments is 
increased; 

- a covariance term between the tilts of the outer segments and the global defocus mode, which is due to the non-
orthogonality of the modes, is present in both cases; 

- a covariance term between the tilts of the external segments is also present; this term is also due to the defocus 
mode, which introduces a cross coupling between these two modes. Note that the cross coupling between the 
global continuous modes has already been discussed (see Cubalchini, 1979). 

 

 



3.2 The 2-dimensional case: SH APS in APE . 

APE is the Active Phasing Experiment carried out at ESO in order to study and compare the performances of 
different kinds of phasing sensors. A segmented mirror will be conjugated to the primary mirror of the Very Large 
Telescope, and four different phasing sensors will be tested in the lab and on sky under identical conditions: a Shack-
Hartmann Phasing Sensor (SHAPS), a Diffraction Image Phase Sensing Instrument (DIPSI), a Pyramid Phasing Sensor 
(PYPS) and the ZErnike Unit for Segment phasing (ZEUS) (see Yaitskova et al. 2006). 

SHAPS is the sensor based on the Shack-Hartmann working principle. A lenslet array optically conjugated with the 
segmented mirror is inserted in the beam. The image formed in the focal plane of the lenslet array is recorded by the 
detector and can be used to estimate the tip-tilt of the segments and the global aberrations generated along the optical 
path, including the ones coming from the telescope. Special cylindrical lenslet in correspondence of the border of the 
segments are used to compute the piston step (see [3] and [5] for more detailed descriptions and preliminary results). 

The next two pictures show the layout of the lenslet array used in SHAPS (left) and one of the images recorded 
during the preliminary test in laboratory (right). 

  
F igure 6: Layout of the SH APS lenslet ar ray (left) and the image formed on the focal plane (r ight). 

 

The array contains 19·61=1159 lenslets, each one with a diameter of 150μm (which corresponds to 18.9 cm on the 
surface of the primary mirror of VLT) and focal length of 5 mm; the footprint of the VLT pupil is indicated in the right 
part of Figure 6 by means of two circles. 

We have performed MonteCarlo simulations in order to compute the errors in the estimation of some low-order 
mode; the following plot shows qualitatively the decreasing of the precision (i.e. the increasing of the variance) of the 
measurement of the tilt of few representative segment 
when the global defocus mode and other continuous global 
modes are included. The segments chosen are the one 
which lie on the vertical axis plotted in Figure 6 (right), 
namely segments 28, 13, 4, 1, 7, 19 according to our 
custom numbering; they have been selected because their 
tilts have the highest correlation with the global defocus. 
Segment 0 (the central one) is excluded because it will be 
obscured by the secondary mirror of VLT. 

The precision is computed relatively to the case in 
which the sole tilt modes are computed (diamonds). It can 
be seen that the uncertainty increases when the defocus 
mode is included (squares); the relative increment is higher 
as the distance from the center increases and where the 

 
F igure 7: Variation of the tilt uncertainty in function 

of the distance with different configuration. 



coupling between tilt and defocus is stronger. The uncertainty increases further if more modes (Coma and Astigmatism) 
are included in the computation (triangles). In addition introduce an asymmetry. 

The residual wavefront error RMS has been estimated for the tip-tilt modes, excluding the continuous ones. 

The precisions of the measure of the tilt angle of a single segment can be computed with the following formula: 
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where  is the uncertainty in the estimate of the spot centroid at the focal plane of the lenslet, photN is the number of 

photons detected and M is the magnification between the lenslet array and the segmented mirror. The surface error 
RMS due to the tilt error can be obtained as: 
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where s is the segment semi-size. The two errors are plotted in Figure 8 as a function of the number of photons. 

  
F igure 8: T ilt precision in function of the photon counts. Theoretical curve (continuous line) and simulated results 

(diamonds) are plotted for the segment til t angle er ror (left) and for the segment R MS surface er ror (r ight). 
 
The variable on the horizontal axis at the bottom is the number of the counts per lenslet for an integration time of 30 

seconds, the variable on the horizontal axis at the top is the correspondent AB magnitudes of a star in R, assuming an 
overall efficiency (top of the sky – detector) of 3.5%, a reference wavelength of 650nm and a bandwidth of 50nm. The 
only noise considered here was the Poissonian photon noise. 

Both plots show the theoretical prediction (continuous line) together with a few points obtained from MonteCarlo 
simulations (diamonds). The discrepancy between the prediction and the simulation is due to the fact that the algorithm 
which computes the centroid is not efficient and the centroid error is ~20% larger than the theoretical limit. 

Counting rates from 10 to 10000 counts/lenslet, corresponding to star AB magnitudes of 17.6 and 10.1, respectively, 
have been considered. The tilt RMS errors for the two extreme cases are shown in the following table: 

Count/lenslet/30sec 
AB 

magnitude 
Tilt angle RMS error 

(μrad) 
Tilt surface RMS 

error (nm) 

  
Simul. Theor. Simul. Theor. 

10 17.6 5.3 4.1 22.4 17.2 
10000 10.1 0.2 0.1 0.7 0.5 

 

Being the segment tip-tilts orthogonal, the residual global wavefront error RMS due just to tip-tilt errors is equal to 
the average wavefront error RMS of the single segment plotted in the right side of Figure 8. 



The previous values refer to the case where just tip and tilts are computed. When one of the continuous modes is 
included, the tilt uncertainty increases, as described previously. For instance, we have estimated that when the defocus 
mode is included, the RMS wavefront error due just to tip-tilts increases by a factor of approximately 20%. 

Finally, the residual global wavefront error RMS after defocus and tip-tilt correction can be computed as: 

CRMSRMSRMS tiltsdefocus  222  
where RMSdefocus and RMStilts are the RMS-normalized uncertainties of the global defocus and of the tip-tilts while C 

is a correlation term (see the appendix for the derivation) due to the cross-coupling between defocus and tilts. 

The estimated residual RMS for SHAPS is plotted in Figure 9. 

 
F igure 9: Expected global R MS after defocus and tip-tilt corrections. 

 
It is important to note that the main contribution to the residual global RMS is due to piston errors. For an optimal 

correction the piston step of the segments should therefore be included in the list of the modes together with tip-tilt and 
defocus. 

4 A PP L I C A T I O N T O  E - E L T  
In the E-ELT case the primary mirror will have 984 segments, which may have tip-tilt and piston. The active 

correction of continuous aberrations is performed by the secondary and the tertiary mirrors. The fourth mirror is 
adaptive. 

A Shack-Hartmann sensor for E-ELT to correct for the low-order aberrations will use M lenslets per segment, with M 
~ A/4r0

2, with A=area of each segment, r0=Fried parameter (10-20cm in the visible band) which gives M~ 7.5 ÷ 27.5 for 
segment size of 1.22m (side to side). 

If we assume the same configuration as used in SHAPS with 19 lenslets per segment and segment size of 1.1 m 
(which was in fact chosen to match the E-ELT configuration), we can apply the result obtained in the previous section. 
The reason is that the precisions computed for the coefficients of the tilts and the defocus, when expressed in terms of 
surface RMS error, are scale-invariant: they depend just on the lenslet density, i.e. the ratio between the number of 
lenslets within each segment and the segment area. 

In that case we can estimate that the efficiency of the wavefront sensor could be a factor 10 higher than SHAPS+APE 
at VLT, due to the absence of APE and to the use of optimized optics and detectors. The sensor should be able to achieve 
the same precision as the one of SHAPS + APE at the VLT but using stars which are 10 times (i.e 2.5 magnitudes) 
fainter. 

For what concern the cross coupling between the continuous and non-continuous mode, we expect the same effect 
described for SHAPS at VLT, i.e. an increase of the uncertainty in the coefficients of the modes and consequently an 
increase of the global residual surface error if the cross-coupling between these modes is not removed. 



5 C O N C L USI O NS 
In this proceeding we have proposed an algorithm for the wavefront reconstruction in a segmented telescope using a 

Shack-Hartmann sensor. 

The problem of the disentangling of a continuous mode from non-continuous ones has been tackled. In particular, we 
have defined a new set of basis functions, which consists of continuous and non-continuous functions; we have seen that 
the presence of a continuous mode together with single segment modes gives rise to a correlation which degrades the 
precision in the estimate of the coefficients. This effect, which is due to the non-orthogonality between the basis 
functions, has been illustrated with few examples. It has been shown that the degradation of the precision with which the 
segment tilts are computed increases when non-ortogonal continuous modes are included. 

A quantitative example based on the measurements obtained with SHAPS, which is one of the wavefront sensors 
which is under test at ESO within the Active Phasing Experiment, has also been presented. An extrapolation to the 
results in the case of the E-ELT has been computed. 
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A PP E N D I X : SU R F A C E  R M S I N A  SE G M E N T E D M I R R O R D U E  T O  T I P- T I L TS A N D 
G L O B A L  D E F O C US 

Consider two wavefronts, a global defocus and a segmented surface, represented respectively by: 
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where  is the defocus amplitude in radians, r is the spatial coordinate with modulus r and components xr and yr , jr is 

the position of the center of segment j, jj rrξ  is the local spatial coordinate, ja1  and ja2  are the tip and tilt of the 

segment j in radians, D  is the diameter of the pupil, d is the flat-to-flat width of the segment,  jξθ is the segment 



characteristic function equals unit within boundary of the segment and zero outside. D, d, r and rj are expressed with the 
same units. 

The segments which fill the quasi-circled area are shown in Figure 10.  The segment area is 2

2
3 dA   and the 

total pupil area is AN. 

 
F igure 10: C ircular pupil over a segmented mir ror . 

 
Consider a special set of functions, namely polynomials which are orthogonal over a hexagon with a unit radius, i.e. 

1jξ  at the corners: 

  10 ξZ    xZ ξ1     yZ ξ2    
6
52 2

3  ξZ  

 r1  and  r2  can be represented as a combination of functions Zi summed over the segments: 
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It can be shown that the RMS of the wavefront formed by the sum    rr 21   is given by: 
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where RMS1 and RMS2 are the global RMS due to  r1  and  r2 , respectively.  
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