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1 INTRODUCTION

1.1 Scope

This document summarizes the features and possibilities of the MID-infrared Interferometric
instrument (MIDI) of the VLT, as it will be offered to astronomers for the six-month ESO
observation period P80, running from 1 October 2007 to 31 March 2008.

The bold font is used in the paragraphs of this document to put emphasis on the important
facts regarding MIDI in P80.

1.2 What’s new in this issue of the MIDI user manual ?

The FINITO fringe-tracker can be used in P80 for VM only. It is important to notice that
there is currently no pipeline or off-line data reduction software to process the MIDI data in
“coherent integration” (addition of all the scans before processing) if they have been taken
with FINITO.

1.3 Acknowledgements

The editor thanks Olivier Chesneau (Observatoire de la Côte-d’Azur, France) who wrote
the very first version of this manual in August 2002, and also contributed to the update
by providing us with some important MIDI facts after commissioning runs. The editor also
thanks Monika Petr-Gotzens, Andrea Richichi and Markus Wittkowski at ESO-Garching for
their comments, as well as Markus Schöller and Andreas Kaufer at ESO-Paranal, and Jean-
Gabriel Cuby (formerly at ESO-Paranal).

1.4 Glossary

Constrain Set (CS)
List of requirements for the conditions (sky transparency, baseline...) of the observation that
is given inside an Observation block (see below) which is only executed under this set of
minimum conditions.

Observation Block (OB)
The smallest schedulable entity for the VLT/VLTI. It consists of a sequence of templates
(see below). Usually, one Observation Block includes one target acquisition and one or several
templates for exposures.

Observation Description (OD)
Sequence of templates used to specify the observing sequences within one or more OBs.

Observation Toolkit (OT)
Tool used to create queues of OBs for later scheduling and possible execution.

Proposal Preparation and Submission (Phase-1)
The phase-1 begins right after the Call-for-Proposal (CfP) and ends at the deadline for CfP.
During this period, the potential users are invited to prepare and submit scientific proposals.
For more information, see:

http://www.eso.org/observing/proposals.index.html
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Phase-2 Proposal Preparation (P2PP)
Once proposals have been approved by the ESO Observation Program Committee (OPC),
users are notified and the phase-2 begins. In this phase, users are requested to prepare their
actual observations in the form of OBs, and to submit them electronically (in case of service
mode). The software tool used to build OBs is called the P2PP tool. It is distributed by ESO,
and can be installed on the personal computer of the user. See:

http://www.eso.org/observing/p2pp.

Service Mode (SM)
In service mode (opposite of the “visitor mode”, see below), the observations are carried out
by the ESO Paranal Science Operation (PSO) staff. Observations can be done at any time
during the period, depending on the CS given by the user. OBs are put into a queue schedule
in OT which later sends OBs to the instrument.

Template
An elementary sequence of operations to be executed by the observation software (OS) of
the instrument. The OS dispatches commands written in templates not only to instrument
modules that control the detector and motors , but also to the telescopes and VLTI subsystems.

Template signature file (TSF)
The file which contains input parameters for a template. Some of these parameters can be set
by the user.

Visitor Mode (VM)
The classical observation mode. The user is on-the-site to supervise his/her program execution.

1.5 Contacts

The authors hope that this manual will help to get acquainted with the MIDI instrument
before writing proposals, especially to scientists who are not used to interferometric observa-
tions. This manual is continually evolving and needs to be improved according to the needs of
observers. If you have any question or suggestion, please contact the ESO User Support De-
partment (http://www.eso.org/org/dmd/usg/index.html, email:usd-help@eso.org). The
web page dedicated to the MIDI instrument is accessible at the following URL:

http://www.eso.org/instruments/midi/
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2 A FEW WORDS ON INTERFEROMETRY

2.1 Introduction

This section gives a short summary and a reminder of the principles of interferometry. As-
tronomers interested in using the VLTI and MIDI, but who are not familiar with interferometry
yet, can get tutorials from the following links:

• http://www.sc.eso.org/santiago/science/interf2002.html (proceedings of ESO-
Chile Interferometry Week 2002).

• http://olbin.jpl.nasa.gov/intro/index.html (Optical Long Baseline Interferome-
try News tutorials).

• http://www.eso.org/projects/vlti/general (VLTI general description and tutori-
als).

• http://www.mariotti.fr/obsvlti/obsvlti-book.html (proceedings of EuroWinter
school “Observing with the VLTI”).

• http://www.mpia-hd.mpg.de/FRINGE/tutorials/01/tutorial 01.html (tutorial in Ger-
man).

2.2 How an interferometer works

An optical interferometer samples the wavefronts of light emitted by a remote target. Sampling
is performed at two or more separate locations (see Fig. 10 and 11 for the case of the VLTI).
The interferometer recombines the sampled wavefronts to produce interference fringes. In
the MIDI context, the interferometer uses two telescopes as light collectors. The telescopes
are separated on the ground by a “baseline” vector. The wavefronts add constructively or
destructively, depending on the path difference between the wavefronts, and produce a fringe
pattern that appears as bright and dark bands, with the bright bands being brighter than
the sum of intensities in the two separate wavefronts. A pathlength change in one arm of the
interferometer by a fraction of a wavelength causes the fringes to move. If the beams from the
telescopes are combined at a (small) angle, the fringes consist of a spatially modulated pattern
on the detector. If the two beams are superimposed coaxially, as in the case of MIDI, the
fringes show a temporal modulation of the signal when scanning the optical path difference
(OPD) between the two beams.

The angular resolution that the interferometer can achieve depends on the wavelength of
observation, and on the length of the projected baseline (the projected baseline vector is the
projection of the on-ground baseline vector onto a plane perpendicular to the line-of-sight. The
projected baseline changes over the night because of Earth rotation). The smallest angular
separation that can be resolved is proportional to the quantity λ/B, where λ is the wavelength
of the observation and B is the projected baseline of the interferometer. This is equivalent to
the expression for diffraction-limited spatial resolution in single telescope observations, where
B would be the telescope diameter.
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Figure 1: Principle of beam combination in long baseline interferometry.

2.3 Interferometric observables

An interferometer measures the coherence between the interfering light beams. The primary
observable, at a given wavelength λ, is the complex visibility Γ = V eiφ = Ô(u, v). In this ex-
pression, Ô(u, v) is the Fourier transform of the object brightness angular distribution O(x, y).
The sampled point in the Fourier plane is (u = Bx/λ, v = By/λ). (Bx, By) are the coordinates
of the projected baseline.

V corresponds to the “visibility” (Imax − Imin)/(Imax + Imin) of the fringes, its phase φ is
related to their position.

The visibility can be observed either as the fringe contrast in an image plane or by modulating
the internal delay and detecting the consequent temporal variations of the intensity, as has
always to be done in the case of coaxial beam combination. This latter mode is used in
the MIDI instrument. In this case, the light from two telescopes A and B is combined by a
half-transparent plate, and the combiner has two output channels 1 and 2 (Fig. 1). The total
observed intensity is ideally given by:

I1 = IA1 + IB1 + 2V
√

IA1IB1sin(2πOPD/λ + φ)

I2 = IA2 + IB2 − 2V
√

IA2IB2sin(2πOPD/λ + φ)

where I1 and I2 are the intensities from the two outputs of the combiner, Ixy the intensity
from telescope x mixed for the channel y of the combiner, and OPD the path difference
introduced by the atmospheric turbulence and by the optomechanical modulator (used to
produce interferograms).

2.4 Visibility estimators

Due to atmospheric fluctuations (see Sect. 3.3), the fringe pattern to be observed is often in
rapid motion, and the phase φ of the complex visibility Γ cannot be estimated. It is often
better to work with the square of the visibility V 2 rather than V itself, because V 2 estimators
are less affected by the smearing of the moving fringe pattern. Averaging the squared visibility
introduces a noise bias which however can be taken into account properly.
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Performing a spectral dispersion of the output of a two-element pupil plane interferometer
produces the so-called channeled spectrum (i.e., a fringe-modulated spectrum):

I(σ) = I0(σ)[1 + V (σ) cos(2πOPDσ) + φ(σ))]

Here, σ is the wave number (1/λ), I0(σ) the spectrum of the light target and OPD, the total
delay between the light path of the two telescopes. Note that the above equation corresponds
to an ideal case for which no atmospheric turbulence would cause OPD fluctuation (see Sect.
3.3), and the incoming beams have the same intensity.

From this equation, we see that fringes with period ∆σ = 1/OPD appear in the channelled
spectrum, provided that I0(σ) and Γ(σ) do not vary strongly with wavelength.
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Figure 2: Mid-Infrared atmospheric transmission

3 OBSERVING IN THE INFRARED

Interferometric observations strongly depend on the turbulence properties of the terrestrial
atmosphere. Observing in the MIR implies additional constraints which are not encountered
in optical observations.

3.1 Atmospheric transmission

The thermal infrared (8 to 25 µm) atmospheric transmission is dominated by aerosol particles
and by various molecular species, including O3 (9.6 µm), CO2 (14 µm), and H2O (≤ 7 µm),
which absorb large parts of the infrared spectrum. Some of these components are constant
for many hours at a time and over the whole sky, others may be variable on quite short
time-scales or over short distances in the sky. Ground based mid-infrared observations can
only be made in two atmospheric transparency “windows”, the N-band (wavelengths between
7.5 and 14 µm) and the Q-band (16 to 28 µm), but even in these windows the atmospheric
absorption and radiation are a major disturbance. Nevertheless, new detector technology and
the extremely dry mountain top of Cerro Paranal can improve the data quality. Transmission
spectra are shown in Fig. 2.

3.2 Background emission

The atmosphere and telescope thermal radiation causes a high background that makes the
observation of faint astronomical targets difficult. It is not unusual to observe objects which
are thousands of times fainter than the sky. The mid-IR (8 to 15µm) sky background is
primarily due to thermal emission from the atmosphere i.e. it is equivalent to (1 - transmission)
multiplied by a blackbody spectrum at a temperature of about 250K. The transmission (and
therefore the emission) varies with atmospheric water vapor content and air mass.

On MIDI, the thermal background is dominated by 27 reflections (when the UTs are used, or
24 when the ATs are used) in the optical train at ambient temperature, which in combination
give a 35% reflection and almost radiate like a blackbody. The thermal background therefore
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is dependent on the sky and interferometer temperature (lower in winter for instance) and
also on possible dust particles on the numerous mirrors used to relay the beams.

Under these conditions, it has become a standard procedure to observe the target (together
with the inevitable sky) and subtract from it an estimate of this sky background obtained by
fast switching between target and an empty sky position. The method used with MIDI to
deal with this correction is called “chopping”. The characteristic time of such a correction is
dependent on the sky variability (which is fast), and on the weather. Sky subtraction has the
additional advantage that detector artifacts are removed.

In interferometric setup without the photometric channels, chopping is not employed. To
cancel out the background, we rely on the fact that between the interferometric channels
of MIDI, the background is almost totally correlated, whereas the interferometric signals
are in phase opposition. Subtracting in each detector frame the area illuminated by one
interferometric channel from the area illuminated by the other will therefore cancel out the
thermal background in the frame.

3.3 Atmospheric turbulence

Atmospheric turbulence is a major contributor to the difficulty of optical and infrared interfer-
ometry from the ground. Rapid atmospheric variations of the OPD between the two arms of
an optical or infrared interferometer, if uncorrected, will cause a smearing of the fringe pattern
and a strong decorrelation of the observed signals. The correlation time of the atmosphere is
milliseconds in the visible and increases to hundreds of milliseconds in the mid-IR.

“Seeing” is the historical term for the fact that the image produced by a telescope, which
is larger than approximately ten centimeters (in optical), is not as sharp as one would ex-
pect from its size and optical quality, but is fuzzy. The fuzziness changes with time and
weather conditions. A short exposure (milliseconds) of such an image reveals a large number
of “speckles”. These speckles move around, disappear and reappear on short time-scales. The
speckle image is in fact a result of interference between wavefronts of randomly appearing,
moving, and disappearing sub-apertures. These sub-apertures are defined by the atmospheric
turbulence “bubbles” in the first few tens to hundreds of meters above the telescope.

The sensitivity of interferometers strongly depends on the seeing, i.e. on the Fried param-
eter, defined as follows: the resolution of seeing-limited images obtained through an atmo-
sphere with turbulence characterized by a Fried parameter r0 is the same as the resolution of
diffraction-limited images taken with a telescope of diameter r0. Observations with telescopes
much larger than r0 are seeing-limited, whereas observations with telescopes smaller than r0

are essentially diffraction-limited. The scaling of r0 with wavelength is favorable for MIDI
since:

r0 ∝ λ
6
5

which at 10 µm and for a 0.8-arcsec seeing in the visible leads to r0 = 4.6 m. It is therefore
much easier to achieve diffraction-limited performance at longer wavelengths, and simple tip-
tilt correction already will give correct results with large apertures. An interferometer correctly
works only if the wavefronts from the individual telescopes are coherent (i.e., have phase
variances not larger than ≈ 1 rad2).

Scintillation is another consequence of inhomogeneities in the atmosphere at altitudes of some
kilometers. Phase gradients due to the pressure gradients of the turbulent air cause mild
deflections of the direction of travel of the wavefront. The cross section of the resulting
cone of rays, intercepted by the telescope pupil, is at any time brighter or fainter than the
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average intensity (the “cylinder of rays” that would ideally feed each telescope in absence
of turbulence). Scintillation is less important in the mid-infrared where fluctuations of sky
emission (“sky noise”) dominate.

3.4 Conclusion

These observational difficulties, mostly resulting from high background variations, have led
to the development of specific observation techniques. These techniques are included in the
templates (see Sect. 1.4) that are used to control MIDI and the telescope. The templates are
extensively described in the template manual, available from the MIDI webpage at beginning
of phase-2 proposal preparation for P80.
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4 MIDI OVERVIEW

4.1 A bit of history

MIDI belongs to the first generation of VLTI instruments. Conceptual studies for a VLTI mid-
infrared instrument started in 1997. The Final Design Review of MIDI was passed in early 2000
for the hardware, and mid-2001 for the software. The integration took place at the Max-Planck
Institut für Astronomie, Heidelberg (Germany). After Preliminary Acceptance in Europe in
September 2002, MIDI was shipped to Paranal and re-assembled there in November 2002,
where it obtained its first fringes with the UTs on the 12 December 2002. Since 1 September
2003, MIDI is offered to the worldwide community of astronomers, for observations in service
mode or in visitor mode.

The MIDI consortium, who built and commissioned MIDI, consists of several european insti-
tutes: Max Planck Institut für Astronomie, Heidelberg (Germany) ; Netherlands Graduate
School for Astronomy (NOVA), Leiden (The Netherlands) ; Department of Astronomy, Leiden
Observatory (The Netherlands) ; Kapteyn Astronomical Institute, Groningen (The Nether-
lands) ; Astronomical Institute, Utrecht University (The Netherlands) ; Astronomical Insti-
tute, University of Amsterdam (The Netherlands) ; Netherlands Foundation for Research in
Astronomy, Dwingeloo (The Netherlands) ; Space Research Organization Netherland, Utrecht
and Groningen (The Netherlands) ; Thüringer Landessternwarte, Tautenburg (Germany) ;
Kiepenheuer-Institut für Sonnenphysik, Freiburg (Germany) ; Observatoire de Paris-Meudon,
Meudon (France) ; Observatoire de la Côte d’Azur, Nice (France).

4.2 Optical Layout

Inside MIDI, the beam combination occurs in a plane close to the re-imaged pupil, and the
signal is detected in an image plane (infinity).

MIDI in the interferometric laboratory is composed by two main parts: the warm optics on
the MIDI table and the cold optics in the cryostat. In addition, in the adjacent Combined
Coudé Laboratory, are located an infrared CO2 laser (used for calibration measurements), the
control electronics and the cooling system.

4.2.1 Cold optics

Since radiation at 10 µm is dominated by thermal emission from the environment, most of the
instrument optics has to be in a cryostat and to be cooled to cryogenic temperatures (6 K to
12 K for the detector, 40±5 K for the cold bench, 77 K for the outer radiation shield).

In the cryostat, the elements of the cold optics appear in the following sequence along the
beams:

1. Shutter

2. Cold pupil stops

3. First off-axis paraboloids (M1)

4. Diaphragms in intermediate focus (spatial filters)
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Figure 3: Principle of MIDI optics. For simplicity, some of the mirrors are illustrated as lenses.

5. Second off-axis paraboloids (M2)

6. Folding flat mirror (M3)

7. Photometric beam splitter plates

8. Folding flat mirrors (for one of the photometric channels) (M4 and M5)

9. Beam combiner (beam combiner plate, M6 and M7)

10. Filters

11. Dispersive elements (prism, grism)

12. Cameras

13. Detector

The core of the cold optics is formed by the beam combiner. It consists of a half-transparent
plate on which the telescope beams are superimposed with nominally 50% of beam A being
transmitted and nominally 50% of beam B being reflected. The remaining light, 50% reflection
of beam A and 50% transmission of beam B, is superimposed too, and directed towards the
detector thanks to an extra mirror. In addition, the cold optics offers the possibility to extract
a signal from the beams before combination (by the mean of cold optics beamsplitters), in order
to get the photometric information (see Fig. 4). The intensity extracted by the “photometric”
beamsplitters for each beam is around 30% of the incoming intensity.

MIDI has two focusing mechanisms: the first one actuates the M1 mirrors to focus the beams
on the spectroscope slits (if dispersion is used) or on future spatial filters, and the second
one translates the detector plane to bring it at the focus of the “camera” (germanium set of
lenses). Baffling within the instrument is mainly done by a cold pupil stop just downstream
of the entrance window of the cryostat.
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Figure 4: Lightpath in MIDI cold optics.

4.2.2 Warm optics

OPD modulation is performed in the ambient-temperature laboratory environment. An
overview on this so-called “warm optics” is given in Fig. 5. As said above, the degree of
coherence of the light target (i.e. the object visibility at the actual baseline setting) is de-
termined by stepping the internal OPD rapidly over at least one wavelength within a time
when the fringe has not moved more than 1 µm on the average (t < 0.1s). This operation is
performed by two dihedral mirrors mounted on piezo translators (DLA and DLB, one for each
arm). One piezo is used for OPD modulation. A translation stage underneath one of them
(DLA) allows to change the internal OPD by a larger amount.

As sketched by Fig. 5, the warm optics bench also includes ancillary devices for calibration
and alignment that can be inserted in the optical path. These devices are beamsplitter and
feeding optics for a CO2 test laser (λ=10.6 µm), spatially-incoherent blackbody target, and
alignment target plates.

4.2.3 Dispersion

MIDI has a spectroscopic mode based on either a NaCl prism or a KRS5 grism, that are used
along with beam combination. The interest of such a mode, besides the possibility to measure
fringe visibility for different spectral channels in the N-band, is explained in Sect. 5.3.

4.3 Detector

The detector is a 320×240-pixel Raytheon Si:As Impurity Band Conduction (IBC) array (also
called “BIB”, blocked impurity band), with the following characteristics:
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Figure 5: MIDI warm optics with individual elements labeled.

Array dimensions 320 × 240
Pixel Size 50 µm × 50 µm
Peak Quantum efficiency 34%
Dark current 104 ē/pix/s at 10 K
Operating temperature 4-12 K
Well capacity 1.1e7 ē
RON ≈ 800ē

The standard operating mode of the detector is called “Integrate-Then-Read” (ITR). In this
mode (“snapshot” mode), before the start of integration, a reset is performed simultaneously
on the whole chip and further accumulation of signal is stopped by a bias voltage at the end of
integration. The frame rate in “snapshot” mode is determined by the sum of the integration
time and the readout time. On the other hand, ITR mode allows to select an integration as
short as 0.2 ms per frame. The minimum integration time is given by the time needed to
propagate the reset signal. The time required to readout a full frame in ITR mode is about 6
ms.

However, in many cases there is no need to read out the full detector array: it may be
advantageous to use sub-array readout (windowing). Windowing of the detector by line selec-
tion reduces the time needed for readout. Windowing by software by column selection after
readout reduces the amount of data to be processed in the downstream steps of data handling.

Fig. 6 shows the type of data that is collected by MIDI if a dispersive element is inserted in
the optical path after the beam recombination: dispersed fringes with phase opposition from
the two recombined beams, in the image plane.
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Figure 6: Image of dispersed fringes obtained in laboratory by MIDI with its grism.

5 MIDI IN PERIOD 80

MIDI combines most of the aspects that usually exist independently in several astronomical
instruments. It involves visibility measurements (interferometry), spectral dispersion (spec-
troscopy), imaging with a detector array (imaging) and background level plus fluctuation
measurement (thermal infrared imaging techniques). Hence, MIDI in its final configuration
will offer a large possibility of setups selectable by the user.

For P80, the available setups consist of:

• Acquisition: imaging mode, several spectral filters available.

• Beam combination: “HIGH SENS” (high-sensitivity): no simultaneous pho-
tometric channel), or “SCI PHOT” (science with photometry): simultaneous
photometric channels.

• Fringe type: dispersed (normal) or white (fringe/astrometry mode, VM
only).

• Spectral mode: prism or grism, with 200-µm (0.52 arcsec on sky) slit .

• Detector readout: integrate-then-read.

• Fringe exposure: Fourier mode (long scan) with dispersion, self fringe-tracking.

The Integrate-Then-Read mode has been described in detail in Sect. 4.3. Below are some
details about the modes for the beam combiner, the dispersive element and the fringe exposure.

5.1 Acquisition

IRIS (see Sect. 6.4) is normally used for acquisition. If IRIS cannot be used, the MIDI imaging
mode should be used for acquisition instead. The imaging mode requires the selection of a
spectral filter.
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The “N8.7” (N-band short wavelengths) filter normally yields the better signal-to-noise ratio
in the exposures obtained from acquisition. Nevertheless, the user has now the possibility to
select the filter of his/her choice for the acquisition. This is important if, for example, the
target shows strong absorption around 8.7 µm.

The table 1 gives the characteristics of these filters. More data (transmission vs. wavelength
plots and ASCII tables) are available from:

http://www.eso.org/instruments/midi/inst/filters.html

Name Central wavelength (µm) FWHM (µm)

Nband 10.34 5.24
SiC 11.79 2.32
N8.7 8.64 1.54

[ArIII] 9.00 0.13
[SIV] 10.46 0.16
[NeII] 12.80 0.21
N11.3 11.28 0.60

Table 1: Characteristics of the MIDI filters.

5.2 Beam combination

As already explained in Sect. 4.2.1, the high sensitivity beam combination (HIGH SENS)
consists in using the R/T=50/50 combining plate alone. In order to obtain photometric
information, exposures with one beam only (first A then B) through the beam combiner with
the same optical path are recorded, after the fringe observation has been performed.

The SCI PHOT setup uses the same combining plate as HIGH SENS, but two beamsplitting
plates with R/T ≈ 30/70 are inserted in the optical path of each beam before it reaches the
combining plate, in order to extract the photometric signal.

5.3 Spectral dispersion

Because of the domination of the thermal background in detector frames, it is necessary to
spread the incoming light onto a large zone of the detector, to increase the DIT (detector
integration time) without saturating the pixels. The sampling time of one fringe has, however,
to be adjusted to stay within the atmospheric coherence time at 10 µm (100 ms typically). Re-
specting this rule, it has been noticed that fringe dispersion on MIDI yields a better sensitivity
than undispersed fringes.

Obviously, dispersion in interferometry allows visibility calculation for different spectral chan-
nels. In this case, the minimum fringe signal for each spectral channel must be, more or less,
equivalent to the limiting correlated magnitude yielding a visibility over the whole N-band
(see Sect. 7.1).

The estimated spectral resolution λ/∆λ of the prism is R = 30 (at λ = 10.6 µm). The
relationship between wavelength (in micron) and detector pixel on MIDI with the prism is
given by:

λ = C2X
2 + C1X + C0
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where X is the pixel position (1 = left edge column, 320 = right edge column in the displayed
image). The coefficients are:

C2 = −0.0001539

C1 = 0.009491

C0 = 15.451905

The accuracy of the above formula with these coefficients is 0.2 µm. Future MIDI calibrations
should refine these values.

The estimated spectral resolution λ/∆λ of the grism is R = 230 (at λ = 10.6 µm). Its C0, C1,
and C2 coefficients (see above for definition) are:

C2 = −1.21122× 10−6

C1 = 0.0231223

C0 = 7.54423

The accuracy of the above formula with these coefficients is 0.1 µm. Future MIDI calibrations
should refine these values.

In spectral dispersion, a slit is inserted in the intermediate focus inside the cold-optics of
MIDI. The width of this slit is 200 µm, which corresponds to 0.52 arcsec on sky with the 8-m
unit telescopes, and to 2.29 arcsec on sky with the 1.8-m auxiliary telescopes.

It is important to notice that the prism and the grism setups use different cold cameras,
providing different magnification factors on the detector:

• Prism mode: “Field” camera (as for image acquisition), magnification= 3 pixels per λ/D
(1 λ/D = 0.26 arcsec on sky).

• Grism mode: “Spectral” anamorphic camera, magnification= 2 pixels per λ/D along
the y-axis, and 1 pixel per λ/D along the x-axis (dispersion direction).

5.4 Fringe exposure

In P80, two fringe modes are offered: the classical“dispersed-Fourier Mode”, and the new
“field/astrometry” mode.

5.4.1 Dispersed-Fourier mode

In dispersed-Fourier mode (Fig. 7), fringes are scanned over an OPD that is several λ̄ long,
to get interferograms (fringe packets) showing the main lobe of the coherence envelope. As
the background is strongly correlated between the two interferometric channels, subtraction
will cancel the background and enhance the interferometric signal (fringes are shifted by π
between the two recombined beams, see Sect. 2.1). The signal obtained for one scan (if the
OPD has been compensated to allow fringe detection) is the actual interferogram. Since self
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fringe tracking is used, the zero-OPD point is computed in real-time by MIDI for each scan,
and then converted into an offset sent to the tracking delay line. In dispersed-Fourier mode,
we now systematically use group-delay tracking: the OPD is measured from the position of
a fringe peak in the Fourier transform of the frame showing dispersed fringes. Scanning the
OPD remains necessary to determine the OPD sign, and also to provide a better quality of
the visibility in each spectral channel at data reduction time.

A raw (uncalibrated) visibility estimation requires a few hundred scans.

The parameters for fringe measurement in dispersed-Fourier mode in P80 are the
following (indicative values and subject to minor changes):

• Dispersion by either prism or grism (see Sect. 5.3).

• One (1) detector frame per OPD sample.

• Five (5) OPD samples for fringe.

• 8 fringes per scan (⇒ OPD scanning range= 80 µm).

After completion of the exposure, each interferogram can be individually processed by Fourier
transform to yield a raw visibility. The algorithm used for this computation usually involves
a Fourier transform of the interferograms, hence the name of this fringe mode.

5.4.2 Field/astrometry mode

This mode is only interesting when it is known that the scientific target consists of a cluster
of several not-connected sources in a narrow field-of-view. The aim is therefore to observe
several interference fringe-packets, each one corresponding to one of the sources.

We consider a ~S the pointing vector of a source that is centered in the MIDI field-of-view, and
~S ′ the pointing vector of a neighbor source in the MIDI field-of-view (Fig. 8). Both sources
will yield fringes separated by the optical path difference:

∆OPD = ~B(~S − ~S ′)

,

where ~B is the VLTI baseline used by MIDI. In field/astrometry mode, the OPD scanning
range is 140 µm (the maximum allowed by the PZT). Since the fringe-packets of the two
sources can be observed only simultaneously in a scan if the two sources have a separation
angle of the order of ∆OPD/B= a fraction of arcsec. Therefore, this mode is reserved to
observe very close sources.

The field/astrometry does not use spectral dispersion. The observations can be performed
with any of the filters that are used for acquisition (see Sect. 5.1).
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6 THE VLTI ENVIRONMENT IN PERIOD 80

6.1 Telescopes and adaptive optics

The available telescopes for MIDI in P80 are the 8-m Unit Telescopes (UTs) of
the VLT and the movable 1.8-m Auxiliary Telescopes (ATs).

6.1.1 The Unit Telescopes and MACAO

Each UT is equipped with an adaptive optics system called MACAO. It consists of a Roddier
wavefront curvature analyzer using an array of 60 avalanche photodiodes. This analyzer applies
a shape correction on the M8 deformable mirror of the UT. The M8 is mounted on a tip-tilt
correction stage. In this case, the telescope is tracking in “field stabilization” mode. In this
mode, the Nasmyth guide probe camera tracks on a selected guide star (observable within
the ≈ 30-arcmin Nasmyth FOV which is centered on the science target) by applying tip-tilt
correction to M2. When reaching the limit, the M2 position is offloaded to the alt-az axes
of the telescope. The tip-tilt mount of the M8 is offloaded by offsetting the Nasmyth guide
probe position, and therefore by offsetting the M2 or the alt-az axes.

The sensitivity of MACAO is V = 16 for a 20% Strehl at λ = 2.2 µm. In practice with
MIDI, MACAO can be used with V = 17. To get diffraction-limited images on MIDI, it is
mandatory that MACAO is used. If the target to observed is fainter than V = 17, but a
suitable guide star exists, it is possible to perform “off-target Coudé guiding”. The guide star
must be brighter than V = 17 and closer than 1 arcmin to the target to be observed on MIDI.
If V > 15, there is a risk that Coudé guiding cannot be performed, depending on the off-axis
distance and on the sky conditions (seeing, τ0)

If no guide star exists, it is still possible to go through with the target acquisition (in order
to ensure beam overlap) by directly offsetting the Nasmyth guide probe from the MIDI obser-
vation software, causing a motion of M2 (which is offloaded to the alt-az axes). In this case,
only the field stabilization by the Nasmyth probe is enabled, and the image quality on MIDI is
usually limited by the seeing. Therefore a lower data quality may be expected. However, this
requires an exceptional seeing. In the past, we have noticed that many attempts to observe
in SM failed because the seeing was never good enough. Therefore, from P80, observations
without MACAO will be carried out in VM only. Users are requested to come with
an alternative (back-up) observing program, since the conditions to carry out OBs for which
MACAO cannot be used are likely to not be encountered.

We guarantee that the MACAO loop is closed, under the following conditions

• Seeing less than 1.5 arcsec.

• Coherence time in visible τ0 larger than 1.5 ms.

• Airmass less than 2.

• Distance from the optical axis less than 57.5 arcsec.

6.1.2 The Auxiliary Telescopes and STRAP

Each AT is equipped with the tip-tilt corrector called STRAP. It consists of a avalanche
photodiode quadrant which measures the tip-tilt of the incoming wavefront. The measured



MIDI User Manual VLT-MAN-ESO-15820-3519 19

Figure 9: A unit telescope (left) and an auxiliary telescope (right).

tip-tilt is compensated by acting on the M6 mobile mirror. When reaching the limit, the M6
position is offloaded to the alt-az axes of the telescope.

The sensitivity of STRAP on the ATs is V = 13.5. If the target to observed is fainter than
V = 13.5, it is possible to perform “off-target Coudé guiding”, provided a suitable guide star
exists. This guide star must be brighter than V = 13.5 and closer than 1 arcmin to the
target to be observed on MIDI. If V > 12, there is a risk that Coudé guiding cannot be
performed, depending on the off-axis distance and on the sky conditions (seeing, τ0).

Note that, unlike the UTs, the ATs have no possibility of guiding if they cannot guide
with the Coudé. Therefore, it is mandatory to use a suitable Coudé guide star (either the
target itself or an off-axis guide star).

6.1.3 Chopping

Performing mid-IR observations requires to discriminate the faint stellar signal against a strong
and variable background that mostly comes from the sky and optical train thermal emission
(see Sec 3.2). The standard technique consists in moving the secondary mirror of the telescope
(M2) at a rapid frequency (0.5 Hz typically). The maximum chopping throw of a UT is 30
arcsec, more than needed for the 2-arcsec interferometric field of the VLTI.

Chopping against an empty part of the sky reduces the background signal to zeroth order
and normally removes the temporal background variations. An intensity gradient, sometimes
strong, remains in the background-subtracted data. It is due to the light paths through the
system which are slightly different for the “on” and “off” positions.

Chopping is always used for MIDI image acquisition (to perform the beam overlap), but not
during fringe exposure in “HIGH SENS” setup. The power spectrum of the background
variations should not affect the fringe visibility down to the offered limiting mag-
nitude (1 Jy in service mode with the prism and HIGH SENS beam-combiner for
the UTs).
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Figure 10: The optical path in the VLTI

6.2 Baselines

6.2.1 UT Baselines

For P80, All the four unit telescopes of the VLT are available for MIDI. The following
table gives the characteristics of the possible on-ground baselines (E is the vector component
over the East direction and N over the North direction):

Name E (m) N (m) On-ground baseline length (m)

UT1-UT2 24.8 50.8 56.5
UT1-UT3 54.8 86.5 102.4
UT1-UT4 113.2 64.3 130.2
UT2-UT3 30 35.7 46.6
UT2-UT4 88.3 13.5 89.3
UT3-UT4 58.3 -22.2 62.4

Note that we cannot guarantee that these six baselines will actually be offered in P80. The
final subset of realized baselines will depend on the number of requests for each baseline.
Therefore, users might be asked later to switch to the next-best baseline. They can already
indicate an alternative baseline in their proposals (as a comment to the interferometric table).

For the longest baseline UT1-UT4, there are limitation for the direction of pointing in the sky,
related to the mechanical range of the delay-lines. The VisCalc tool (see Sect. 7.3) gives the
possible limits.
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6.2.2 AT baselines

For P80, A large set of AT baselines is available for MIDI. To get the exact list, please
refer to the webpage:

http://www.eso.org/paranal/insnews/vlti overview.html

With the commissioning of the variable curvature mirrors (VCMs, see following section) on
the different VLTI delay-lines at different times, and in order to have always the VCMs used
during observations, the name of the stations that will be used, and therefore the actual names
of the baselines may not be the one given in the list. However, the observations will be carried
out on equivalent baselines having the same vectors as the ones in the list.

6.3 Delay lines

The delay lines are used to compensate the OPD between the two telescopes, from the incoming
stellar waveplane to the instrument entrance. Each telescope has a dedicated delay line. One is
fixed whereas the other continuously moves in order to compensate OPD for apparent sidereal
motion.

The VLTI delay lines are based on a cat’s eye optical design featuring a variable curvature
mirror (VCM) at its center. The aim of the VCM is to perform a pupil transfer to a desired
location, whatever the delay line position. In the case of MIDI, the optimal pupil position
is the “cold stop” that is located inside the cryostat after the shutter. The advantages of
transferring the pupil are:

• An optimized field of view (1.6 to 5 arcsec with the ATs). Fringes can be obtained from
any target within the FOV.

• A reduction of the thermal background related to VLTI optics.

In P80, we guarantee that the VCMs are used for MIDI observations with the ATs only.

To compensate OPD drifts due to uncertainty of the array geometry, as well as atmospheric
differential piston, position offsets can be applied at high rate to the moving delay line by an
OPD controller. The OPD controller receives commands either from the science instrument
itself (self fringe-tracking), or from a fringe tracker.

6.4 IRIS

IRIS is the infrared field-stabilizer of the VLTI. Its purpose is to perform field-stabilization
on the telescopes by measuring the low-frequency tip-tilt from the VLTI laboratory. IRIS
guarantees therefore the correct alignment of the beam during the observations. IRIS normally
operates in K-band for MIDI operations.

Although the users are requested to give the H-magnitude in the MIDI OBs, this value allows
IRIS to work at its best performances, thanks to an adaptive integration time algorithm. An
approximation of the H-magnitude can be found from the V-magnitude and the spectral type
of the target, using the plot on Fig. 12.

As another advantage, IRIS allows to skip the acquisition by MIDI imaging, reducing con-
siderably the execution overheads. If the target is too faint for IRIS, then the acquisition
by MIDI will be executed. Users still have to indicate which MIDI filter has to be used for
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Figure 11: Layout of VLTI telescope locations.

Figure 12: Difference of magnitude between V and H bands, depending on the spectral type.
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acquisition, but it does not mean that MIDI acquisition exposures will be taken. Acquisition
images are not considered as scientific data and cannot be requested by the users.

6.5 FINITO

FINITO is the VLTI fringe tracker. Its purpose is to compensate at high rate the atmospheric
differential piston between the two telescopes used by the interferometric instruments, in order
to stabilize the fringes. FINITO works in H-band.

During P80, FINITO can be used with MIDI in VM, in HIGH SENS mode, with
the ATs only. The interest of FINITO with MIDI is limited for several reasons:

1. For many targets, the limiting magnitude of MIDI comes from the quality of the pho-
tometry exposures.

2. Many MIDI targets are over-resolved in H band. The interest of FINITO would be to
observe targets with a high visibility in H, and a low visibility in N. Therefore, FINITO
is interesting for very specific MIDI programs (e.g., extended disks around stars).

The performances of FINITO are:

• Limiting magnitude in H: 4

• Limiting magnitude in K (for IRIS fast-guiding): 4

• Limiting visibility in H: 15%

6.6 Organization of VLTI observations

For P80, MIDI is offered in service mode and in visitor mode (see Sect. 1.4).
For the phase-1 of a period, the unique contact point at ESO for the user is the User Sup-
port Department (see Sect. 1.5). For the phase-2, USD is still the contact point for service
mode, and the Paranal Science Operation department is the contact point for visitor mode
(www.eso.org/observing/p2pp/VisitorMode.html).

The visitor mode is more likely to be offered for proposals requiring non-standard
observation procedures (like complex structures in the field-of-view of MIDI). The OPC
will decide whether a proposal should be observed in SM or VM. As for any other instrument,
ESO reserves the right to transfer visitor programs to service and vice-versa.
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7 PHASE-1 PROPOSAL PREPARATION WITH MIDI

Submission of proposals for MIDI should be done through the ESOFORM LaTeX template.
It is important to carefully read the following information before submitting a proposal, as
well as the ESOFORM user manual. The ESOFORM package can be downloaded from:

http://www.eso.org/observing/proposals/

Considering a target which has a scientific interest and for which MIDI could reveal interesting
features, the first thing to do is to determine whether this target can be observed with MIDI
or not. Several criteria must be taken into account.

7.1 Target brightness

The brightness of the target in the N-band will determine whether it is observable at all in self
fringe-tracking mode. The limiting magnitudes for MIDI observations on unresolved
objects in P80 are the following:

Telescopes Beam combiner Dispersion Limiting mag. (N) Equivalent in Jy at 12 µm

UT HIGH SENS PRISM 4 1
UT HIGH SENS GRISM 2.8 3
UT SCI PHOT PRISM 3.2 2
UT SCI PHOT GRISM 2 6
AT HIGH SENS PRISM 0.74 20
AT HIGH SENS GRISM 0.31 30
AT SCI PHOT PRISM 0.0 40
AT SCI PHOT GRISM -0.44 60

Note that in the case of MIDI in P80, the N-band limiting magnitude refers to the correlated
(unresolved) flux, i.e. to the product brightness × visibility. A bright target may be so
extended, and therefore has such a low visibility that no fringe tracking is possible on it.

The visual brightness will determine whether MACAO or STRAP can be used on the target
or not. As said before, the brightness limit is V = 17 for MACAO on the UTs, and V = 13.5
for STRAP on the ATs.

The field/astrometry mode is offered for the UTs only, with the limiting correlated
magnitude of 5 Jy. If future commissioning runs prove that this limit can be lowered, waiver
for observing fainter targets with this mode will be considered.

7.2 Time of observation

It is important to know that in P80, slots of 60 minutes in service mode, and 90
minutes in visitor mode, per calibrated visibility vs. wavelength curve at a given
(u, v) point, will be attributed , regardless of the correlated magnitude in N-band
of the target. Since the DIT (detector integration time) of MIDI is usually determined by
the level of the thermal background illuminating the detector, the user will have no freedom
on this parameter. Paranal Science Operation can adjust parameters of fringe exposures for
faint objects. The values of these parameters (which are not visible for the user from the
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templates) are included in the FITS header of the data files that will be delivered to the user
after observation.

7.3 Geometry

Important parameters of the instrument to be taken into account for the preparation of the
observing schedule are the VLTI geometry during observation (the (u, v) coverage). The
selection of the baseline requires the knowledge of both the geometry of the VLTI and of that
of the target.

To assess observability of a target with VLTI, it is mandatory to use the VisCalc
software. The front-end of VisCalc is a comprehensive web-based interface. VisCalc can be
used from any browser from the URL:

http://www.eso.org/observing/etc

It is important to check that the altitude of the observed object is never below 30◦.

Since we had problems in service mode in the past with over-resolved targets (which appeared
resolved in imaging mode at the acquisition, or for which no fringes were found), or with
low-precision IR coordinates (which could not be seen on MIDI), we encourage the users to
collect as much information on their targets as possible, before submitting a MIDI proposal.
For instance, a proposal for a pre-imaging study on VISIR (VLT instrument) may help to
know more about the feasibility on MIDI.

7.4 Guaranteed time observation objects

It is important to check any scientific target against the list of guaranteed time observation
(GTO) objects. Only the MIDI consortium is allowed to observe these objects with MIDI,
until the end of the guaranteed time period. This guaranteed time period covers the full P80.

To make sure that a target has not been reserved already, the list of GTO objects can be
downloaded from:

http://www.eso.org/observing/proposals/gto/index.html

7.5 Calibrator stars

High quality measurements require that the observer minimizes and calibrates the instrumental
losses of visibility. To get a correct calibration, the user should use appropriate calibrator
stars in terms of target proximity, calibrator magnitude and apparent diameter. In the case
of MIDI, the calibrator is observed after the science target, using the same templates.

For each science target, a calibrator star must be provided by the user with the
submission of the phase-2 material. To help the user to select a calibrator, a tool called
“CalVin” is provided by ESO. CalVin can be used from any web browser. Like VisCalc,
CalVin can be used on the web from:

http://www.eso.org/observing/etc

The users have also the possibility to use spectrophotometric calibrators as calibrators of
their targets, if they wish to later perform a calibration of the correlated flux. A list of
spectrophotometric calibrators (MIDI-consortium calibrators that are also referenced in the
ISO catalogs) is available at:

http://www.eso.org/instruments/midi/tools/spectrophot std.html
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7.6 Observation constraints

The Moon constraint is irrelevant for mid-IR observations. However, if the Moon is to close
to the target (less than 5 deg. typically), the scattered moonlight may prevent MACAO
from working correctly. The VLTI astronomers make sure that the OBs in service mode are
executed when the Moon is far enough from the targets. In visitor mode, users should carefully
schedule their night-time using Moon ephemeris to avoid problems of scattered moonlight.

The seeing condition has no impact on the MIDI image quality: as long as the seeing and the
τ0 allow MACAO or STRAP correction, the MIDI images are diffraction-limited.

The sky transparency constraint is relevant only in special cases: in HIGH SENS mode, thin
cloud conditions may cause variations of flux between fringe-track and photometry exposures.
Also, if a faint off-axis guide star is used, thin cloud conditions may have impact on the MIDI
image quality. On contrary, thin cloud conditions are not a problem in SCI PHOT mode if
the guide star is brighter than V = 15 (if the UTs are used) or V = 12 (if the ATs are used).
The difference between photometric and clear conditions are irrelevant for MIDI operations.
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8 MIDI OBSERVATIONS

Once a MIDI proposal is accepted by the OPC, it must be set in a form that it can be carried
out by Paranal Science Operation. Some knowledge of the observation sequence of MIDI is
necessary before tackling phase-2.

8.1 Observation sequence

An observation with MIDI in P80 can be split in the several subtasks:

1. Slew telescopes to target position on sky, and slew one of the delay-lines to the expected
zero-OPD position. Bring them in “tracking” state (pre-defined sidereal trajectory).

2. Bring telescopes in Nasmyth, then Coudé (MACAO or STRAP) guiding (use of a guide
star for field stabilization) if feasible.

3. Adjust telescope positions, so the beams from the target will overlap inside MIDI and
be recombined.

4. Search the optical path length (OPL) offset of the tracking delay line yielding fringes on
MIDI (actual zero-OPD), by OPD scans at different offsets.

5. Go back to the OPL offset corresponding to zero-OPD, and start to record data of
interest: interferograms obtained by OPD scans (fringe exposure).

6. Integrate exposures for photometry, in the same instrument configuration, but with
beam A only ; then with beam B only.

.

Usually the sensitivity is limited by the internal fringe tracking, which has to be performed
with integration times that are shorter than the atmospheric coherence time.

8.1.1 Target acquisition

When the operator starts on the instrument an OB received from the OT, the acquisition tem-
plate begins. The sequence of this template starts by a “preset”: the target coordinates (α, δ)
are sent to the telescopes and the delay lines, so they can slew to the position corresponding
to the target coordinate at preset time. Once the telescopes are tracking and Coudé-guiding
(with MACAO or STRAP), the target can be seen in the FOV of MIDI in imaging mode.
To ensure beam interference, the images from both beams must be overlapped. The beam
overlap is performed by either:

• Using the IRIS guiding system (see 6.4). IRIS will offset the telescopes to bring the
target photocenter onto the reference pixels (defined for the IRIS vs. MIDI alignment)
of its detector. IRIS guarantees that the beam overlap is kept by sending corrections to
the telescopes. This method will be used as default.
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• Using the MIDI acquisition image setup and its associated script that repeats several
iterations of the sequence: star photocenter measurement, then offsets calculated and
sent to the telescope to bring the star image on a reference pixel of the detector. The
loop stops when the error vector for both beams is smaller than a pre-defined threshold
(0.8 pixel). This method is now considered as obsolete and is used only if the target is
too faint for IRIS.

As stated in Sect. 6.1, the user has a possibility to use a guide star for the Coudé systems,
different from the target. He/she will have to indicate the coordinates of this star, which, for
the UTs (resp. the ATs) , should be brighter than V = 13.5 (resp V = 17) and within a 1
arcmin (resp. 1 arcmin) radius from the target. If no guide star exists, Coudé guiding will
not be used, which may have an impact on the fringe SNR. A seeing constraint has to be
indicated.

8.1.2 Fringe search

Once beams are overlapped, fringes can be obtained provided VLTI delay line positions yield
a zero-OPD (±30 µm). In this case, scanning the OPD with the MIDI piezo-mounted mirrors
will yield interferograms.

In absence of an external fringe tracker, fringe search for MIDI consists in doing several scans
at different delay line position offsets. These offsets are within a range around the expected
zero-OPD value (given by an OPD model), and the incremental step of the offset is adjusted
for covering the whole fringe search range given by piezo scans. The fringe search is normally
executed in “fast” mode: 500-µm OPD steps between two scans, and dispersion using the
grism to get the maximum coherence length.

8.1.3 Fringe measurement in Fourier mode

Once the delay line offset that yields the zero-OPD is found, a batch of interferograms can
be recorded in a series of scans to form an exposure. Group-delay measurements are used to
correct the position of the tracking delay-line. If the “SCI PHOT” setup is used, chopping
(synchronized with the scans) is performed in order to remove at data reduction time the
thermal background from the photometric channels. This does not affect the fringe tracking.

8.1.4 Photometry

With the “HIGH SENS” setup and in order to compute the fringe visibility from interfero-
grams, it is necessary to measure the flux from each beam through the beam combiner, using
the same optical set up as for fringe measurement. Two exposures are therefore taken, with
the MIDI shutter at different positions (beam-A open only, then beam-B open only).

Similar exposures are also taken in SCI PHOT, since they can be used the refine the pho-
tometry measured in the photometric channels during the fringe exposure. For P80, the
number of frames for the photometry can be adjusted by the user. See the MIDI
template manual for details.
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8.2 Total sequence timing

As said in Sect. 7.2 for MIDI in P80 the average time to get a calibrated visibility point is 60
minutes in service mode. Hence, the time to complete the above tasks is 30 minutes. This
value includes all the overheads. The variable duration of the photometry exposures (set by
the user) has a minor impact on the OB execution time.

Visitor mode is usually allocated for targets that require a non-standard acquisition procedure
(i.e., very faint target, no Coudé guide star exisiting, target that is embedded in a complex
structure in IR, etc..). In this case, 30 minutes of overheads for the scientific target observation
are granted, and the allocated time to get a calibrated visibility is 90 minutes.

8.3 The VLT software environment for phase-2

Observations are described by Observing Blocks (OBs). A standard OB consists of:

• A target coordinate set.

• A target acquisition template.

• A set of observation templates for data collection.

• A constraint set.

• A list of intervals of the local sidereal times at which the observations shall be executed.

The templates are the atoms of an OB sequence. They represent the simplest units of an
observation and are described extensively in the Template Manual. The P2PP software enables
users to create lists of targets. For each target one or several OBs can be created with P2PP
by selecting templates and by filling request keyword values (free parameters of the templates)
and intervals of the local sidereal times at which the observations shall be executed” . The
P2PP user manual is available at the ESO website:

http://www.eso.org/observing/p2pp/#Manual

For a detailed description of the MIDI templates, please refer to the P80 “MIDI Template
Manual”. This document will be downloadable, at phase-2 time (around January 2006) from
the MIDI webpage at ESO.

8.4 Post-observation process

8.4.1 Data handling

Data from the MIDI instrument will be stored as FITS binary table files.

Because of the high frame rate of the MIDI detector, the amount of produced data is bulky.
One should expect at least 1.2 Gbyte of raw data for each calibrated visibility measurement.
To ease data handling, an exposure is split into several 100-Mbyte files (if the exposure is larger
than this size), and a file containing the information about the organization of the exposure
in multiple files is generated.
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8.4.2 The pipeline

Information concerning the pipeline (quick data processor to assess the validity of exposure
data) and the data quality control can be found on the web at:

http://www.eso.org/observing/dfo/quality/

For the data reduction, there are several IDL packages: MIA (developed by MPIA), EWS (de-
veloped by Leiden Observatory), OYSTER (an interface for MIA and EWS). More information
can be found at:

http://www.mpia-hd.mpg.de/MIDISOFT/mia.html

http://www.sc.eso.org/~chummel/midi/midi.html

8.4.3 Data distribution

For any information on the ESO data distribution policy, please check the webpage:

http://www.eso.org/org/dmd/usg/DataDist.html
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