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Abstract.

ESO’s two FOcal Reducer and low dispersion Spectrographs (FORS) are
the primary imaging cameras for the VLT. Since they are not direct-imaging
cameras, the accuracy of photometry which can routinely be obtained is limited
by significant sky concentration and other effects.

Photometric standard observations are routinely obtained by ESO, and
nightly zero points are computed mainly for the purpose of monitoring the in-
strument performance. The accuracy of these zero points is about 10%.

Recently, we have started a program to investigate, if and how percent-level
absolute photometric accuracy with FORS can be achieved. The main results
of this project are presented in this paper. We first discuss the quality of the
flatfields and how it can be improved. We then use data with improved flat-
fielding to investigate the usefulness of for FORS calibration and the accuracy
which can be achieved.

The main findings of the FORS Absolute Photometry Project program are
as follows. There are significant differences between the sky flats and the true
photometric response of the instrument which partially depend on the rotator
angle. A second order correction to the sky flat significantly improves the relative
photometry within the field. Percent level photometric accuracy can be achieved
with FORS1. To achieve this accuracy, observers need to invest some of the
assigned science time for imaging of photometric standard fields in addition to
the routine nightly photometric calibration.

1. Introduction

ESO operates two version of the FOcal Reducer and low dispersion Spectrograph
(FORS, Appenzeller et al. 1998); FORS 1 and FORS 2. Routine nightly photo-
metric calibration observations for the FORS and other ESO imaging cameras
aim to provide photometric accuracy of about 5 to 10%. The primary purpose of
these observations is to monitor instrument performance. In addition, they often
are used to calibrate science observations which do not require highly accurate
photometry. The ESO FORS Absolute Photometry Project (FAP) recently used
FORSI1 to investigate the accuracy of photometry with that camera with the
goal to establish procedures and advice observers with percent level photomet-
ric calibration needs. The specific goal of FAP was to demonstrate the feasibility
of 3% photometry. This report describes the methods and results of FAP.
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2. FORS Flats

The quality of the flatfields determines to a large extend the accuracy of relative
photometry. For FORS, twilight sky flats are used almost exclusively. twilight
flats are routinely taken at the start and end of the night, usually in groups of 4
frames. One area of concern in any is the presence of large scale features in the
flatfields which do not correspond to variations in the sensitivity as a function
of position on the detector. If for example illumination gradients are present,
they will be propagated into the science images and the resulting photometry
will be affected by position-dependent systematic errors.

Such gradients in flatfields are often introduced by the illumination source,
in the case of FORS flats the twilight sky. Gradients or other flatfield artifacts
can also be introduced by the instrument, e.g. through scattered light. Both
issues are examined in this section.

2.1. Sky Gradients

During twilight, the sky is known to show illumination gradients, which change
with time and the position of the Sun relative to the pointing of the telescope.
Under conditions which are typical for FORS sky flats, the measured gradients
can range from 2 to 5% per degree (Chromey & Hasselbacher 1996). For the field
of view (FOV) of FORS (6/.8x6'.8), this translates into natural gradients that
range from 0.2 to 0.5%. On these small spatial scales, the illumination pattern
is expected to be well approximated by an inclined plane, whose maximum
gradient direction and intensity changes with the position of the Sun relative to
the imaged sky. In principle, such sky gradients can be removed from individual
flats before stacking them (Chromey & Hasselbacher 1996).

Figure 1. Comparison between two R flats taken on July 14, 2005 on
10:59:19.530 (left) and 22:43:32.037 (right). The images are flatfields divided
by the mean of all flatfields for that night. The intensity scale range is 3%.

The structure in observed FORS flatfields reaches peak-to-peak values of
more than 3%, i.e. an order of magnitude higher than typical twilight sky
gradients. The structure in flat fields taken in consecutive or even the same night
sometimes differs substantially. This is illustrated in Fig. 1, were we compare
two FORS1 R band flats taken about 12 hours apart. These changing structures,
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which dominate over the natural twilight sky gradients, make it difficult to judge
whether such gradients are present in any given observed flatfield.

2.2. Instrumental features

In order to investigate the structure and amplitude of FORS1 intrinsic flatfield
more systematically, we have retrieved from the ESO Archive all obtained be-
tween January 1, 2005 and September 30, 2005 in the U BV RI passbands . The
total number of images taken with standard resolution, 4-port read-out and high
gain setting is 1083 (U: 148, B: 208, V: 226, R: 261, I: 240).

Each individual image was then bias-corrected using the pre-scan region
only. We then computed the mean of the flatfields for each filter, and divided
each individual frame by this mean. This removed the stable part of the flatfields
such as the difference between the four quadrants and other large scale features.
Finally, to allow quick visual inspection, we produced movies where each frame
is an individual sky flat. Inspection of such movies revealed that the structure
in the flatfields consists of a temporally constant pattern superimposed on large
scale fluctuations which rapidly change in time. The contrast of the constant
pattern is higher in bluer bands. We also found a correlation of some of the
patterns with the adaptor rotator angle. FORSI1 is mounted on an adapter
rotator which compensates for the sky field rotation inherent to the VLT alt-
azimuth mounting. Part of the structure in the flat field seems to rotate rigidly
with the angle of the rotator. This is illustrated in in Fig. 2. This pattern in
the flatfield must be external to FORS1 and might be due to reflections and/or
asymmetric vignetting within the telescope or the adapter itself.

We extracted a high signal-to-noise version of the rotating structure in the
following manner. First, we counter-rotated all B images by an amount equal to
the rotator angle reported in their FITS header. We then computed the median
of the rotated flatfields. The resulting median image is shown in Fig. 2. If
there were no correlation between the structure in the flatfields and the rotator
angle, then the structure of the individual flatfields should average out and the
median would be smooth and flat. Instead, the opposite can be seen can be seen
in Fig. 2. A finger-like pattern, which is already visible in the individual flats
shown in Fig. 2, stands out with increased signal-to-noise. It is therefore clear
that this feature rotates. The peak-to-peak amplitude of the pattern is about
1%. Inspection of individual images in the stack shows that the amplitude varies
substantially among the individual flatfields.

The existence of such a pattern imposes a limit on the accuracy of relative
photometry reachable with FORS. If the feature is due to a rotation of the
sensitivity pattern imprinted on all science frames, one would need to carefully
match the rotator angle of the flatfield to those of each science frame. If, however,
this feature is an additive component to the flat, removing it from the flatfield
would improve the photometric accuracy of all flatfielded science data. One
possible procedure to remove the rotating feature is to combine a large number
of flatfield images taken with different rotator angles. If all angles are represented
with the same weight, any rotating structure should smooth out. We tested this
procedure with the R band flatfields. In each rotator angle bin of 10°, we selected
the same number of flatfields. We then computed the median of those flats. The
result is shown in Fig. 3. The remaining structure in this combined flat is much
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Figure 2. Top: A sequence of B FORSI1 sky-flats. The rotator adapter
angles (—105°, —73°, —35°,0°,430°, and +70°) are indicated by a blue arrow
in the upper right corner. Bottom: Stack of rotated B-band sky flats. Each
image was rotated by the negative of the adaptor rotator angle

more rotationally symmetric than the one in individual frames. There appears
to be a small central light concentration.

Both, the rotating features shown in Fig. 2 and the illumination pattern
shown in Fig. 3 appear to be stable in time, at least within the 9 month ex-
plored by this investigation. However, it should be emphasised that not all the
variations in the flatfields can be described by a simple rotation. For example,
the difference between the two flatfields shown in Fig. 1 seems to be similar to a
90° rotation, but the adapter rotator angle changed by only about 25°. In Sec. 4.
we will therefore investigate how FORS1 flat fields can be further improved.

2.3. Impact on Photometry

The key finding of this Section is that relative gradients in individual twilight
flats as routinely obtained each night differ from each other by as much as 5%.
If such flatfields are applied to science data, the relative photometric accuracy is
limited to about 5%. Even when controlled for rotator angle, flatfields differ from
each other by an amount which questions the goal of the current project, i.e.
relative photometric accuracy of better than 3%. A key question is whether these
fluctuations reflect true differences in the end-to-end throughput of FORS1. In
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that case, relative and therefore absolute accuracy at the percent level simply
cannot be obtained with FORS1. An alternative explanation is that the flatfields
are flawed and do not represent the throughput of FORS1. In that case, the task
is to find the true flatfield which should be applied to data so that photometric
zero points are constant over the whole detector. In the following sections,
we will use data from the FAP programme to test the quality of the flatfields
constructed in this section, and compare it to the regular “master flats” produced
by combining the routinely taken twilight flats for that night.
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Figure 3.  Co-addition of a selected sample of 240 R sky flats. Left: Image
of the combined flatfield. The intensity scale range is 3%. Right: Traces along
the central column (upper panel) and central row (lower panel).

3. FAP Data

3.1. Observations

Obtaining 3% photometric accuracy requires: 1) relative photometric calibration
within each field; 2) absolute calibration of the extinction relation with slope
and zero point; and 3) calibration of colour terms. Methods and data to obtain
accurate relative photometry within the FORS1 field have been presented by
Moller et al. in report IT of the FSSWG project (Moller et al. 2005, hereafter
FWII). For the current project, we aimed at an independent assessment of the
relative photometric calibration to investigate whether the FWII results can be
reproduced.

Our observations consisted of a 5 x 5 grid of positions on the Stetson stan-
dard field Mark A (Stetson 2000) observed at low airmass. In addition, we
observed one pointing on the grid of positions with two extra position angles.
The pointings are shown in Fig. 4. All observations of that field were obtained
at airmasses between 1 and 1.2.

In addition, we obtained data for the three standard fields , and observed
at airmasses between 1.1 and 2.9. The FORS FOV is much smaller than the
Stetson fields. We selected subregions of the standard fields which avoided bright
stars. Unfortunately, for L113 a bright star was included in the observed field
by mistake. This star saturated the CCD and led to bleeding, high background
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Figure 4.  Pointings on the Stetson Mark A field. The outline of the FORS1
frames are shown superimposed on the DSS field of that region. The well
observed standard star , which is included in all frames is marked with a
circle. Note the three different rotator angles used for the central field.

and bias offsets. For that reason, only a small fraction of the stars on the L113
field were useful, and 4 images had to be completely discarded.

All observations were carried out in a single photometric night on July 17,
2005.

3.2. Basic Data Reduction

Standard subtraction of overscan region and bias frames were performed using
the TRAF “xccdred” package.

In order to compare the quality of flatfields, we used three different flatfields
and applied them to the full set of data. They are:

MASTER FLAT: Most reductions of FORS data use the “master flat” as
produced by the FORS pipeline. This flat is basically the median of the flats
taken for the night of observations. Below we simply refer to this flat as “”.

ILLUMINATION-CORRECTED FLAT: As shown in the previous section,
the large scale illumination of the flats is not stable and changes from exposure
to exposure. We have therefore applied an illumination correction to the master
flat by removing its large scale variation. We used the IRAF task “mkillumcor”
for that purpose. This task heavily smooths the master flat and then subtracts
this smooth version from the original master flat. The smoothing kernel used
by mkillumcor is a boxcar function with fixed size in the central part of the
image, and reduced size close to the edges. The minimum box size we used was
15 pixels, and the maximum 200 pixels. A 2.50 clipping was used to exclude
deviant points from the computation of the smoothed image. Below we refer to
this flat as “”.
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ROTATION-CORRECTED FLAT: Finally, as an experiment, we also used
the mean of the archive flats shown in Fig. 3. As described in Sec. 2.2., the
input flats were selected so that flats taken at any rotator angle are equally
represented. We will refer to this flat as the “”.

3.3. Measurement of Magnitudes

Stars were identified and instrumental magnitudes were measured using . Based
on the inspection of the growth curve, we computed aperture magnitudes with
an aperture radius of 2 arcsec, and compared them with Sextractor’s “automag”.
The difference between the two magnitudes was found to be independent of the
magnitude of the stars. Because of its smaller statistical error, the analysis was
done using the “automag”.

4. Zero Point Variation Across the FORS1 Detector

The doubt about the quality of the flatfields discussed in Sec. 2.1. and raised by
the FWII report warrants taking a closer look at any variations of the magnitude
zero point across the detector when using the master flat. The goal is to derive
a correction to the used flatfield similar to the one proposed by FWII to improve
the accuracy of the flatfields. In addition, we aim to find a quantitative estimate
of the accuracy of the final adopted flatfield.

4.1. 25 Points of Light

The dithered observations were planned with the specific intent of placing one
of the Stetson standard stars, namely Mark A-S873, on a grid of positions on
the CCD (see Fig. 4). This approach is often nicknamed the “1000 points of
light” approach, but we call it more modestly the “25 points of light”. The
simplest and most direct way to investigate relative with such data is to plot
the relative instrumental magnitudes of Mark A-S873 as a function of position.
Such a plot is shown in in the left panel of Fig. 5. It can be seen that any
relative photometric errors within the part of the detector sampled by our grid
are on the order of 30 mmag or less. The sensitivity achieved with this analysis
is insufficient to convincingly detect flatfield variations.

4.2. 1000 Points of Light

Better statistics than in Fig. 5 can be obtained by including all stars with mag-
nitudes listed by Stetson. About 1000 magnitudes of Stetson stars have been
measured from our data set. The right panel in Fig. 5 shows the difference be-
tween instrumental magnitudes and Stetson magnitudes as a function of position
on the detector. No bandpass correction was applied. The scatter of individual
points in this plot is larger than the scatter in Fig. 5 because of errors in the
Stetson magnitudes and because differences between the FORS1 and Stetson’s
effective filter shapes makes the zero point of stars depend on colour. This is
more than compensated by the larger number of measurements. This larger
data set clearly detects some deficiencies in the flatfield with total peak-to-peak
error in relative photometry, within the inner part of the detectors, of about
30mmag.
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Figure 5.  Left: Data for Mark A-S873. The colour of the points in the
upper panel indicates the y-coordinate of the star in each observation. For
y > 1024, points are red, and for y < 1024, points are blue. Similarly, in the
lower panel, red stands for x > 1024, and blue for z < 1024. Error bars are
statistical errors. Right: Data for all Stetson stars in the Mark A field are
plotted. Solid lines show the data binned in 100 pixel wide bins.

4.3. Many Points of Light

f(xz,y) The images of our data set contain many more stars suitable for pho-

tometry than the ones listed by Stetson. The large number of stars allows to
simultaneously fit for relative zero points of each image, the relative magnitude
of each star and zero point variations across the field. FWII describes a method
to find such a solution from a set of measured magnitudes on a set of dithered
images. The power of this approach comes from the much larger number of
stars which can be used to improve the statistics compared to the previous ap-
proaches. By contrast, the number of free parameters (one for each star and
observed field) increases only modestly.

Figure 6.  R-band flatfield correction frame.
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FWII defined a flatfield correction factor f(z,y), so that each measured
magnitude of a star on any of the images can be written as

My = My + 24 = f(2,9) (1)

where M, is the magnitude of star v within the chosen band, m,,, is its instru-
mental magnitude measured on image p, and 2, is the zero point of image .
Following FWII’s approach, we used a polynomial to model f(z,y),

o o—1i

Fla,y) =D pyaty’. (2)

i=0 j=0

The formalism to compute f(z,y) is described in Appendix A

To estimate the uncertainties in the correction frame, we have carried out
Monte-Carlo simulations in the following manner. First, we added normally dis-
tributed random errors to the measured magnitudes of each star. The standard
deviation of the Gaussian was chosen to be identical to the error estimate in the
actual measured magnitude. We created a total of 100 artificial data sets in this
manner, and fitted f(z,y) for each of them. We then computed the rms from
all artificial data sets for each pixel.

Results  The resulting f(x,y) flatfield correction is shown in Fig. 6. The peak-
to-peak flat-fielding error at the position of the observed stars is about 30 mmag.
The peak-to-peak flatfield correction over the whole field is about 50 mmag.
However, over a large fraction of the detector, the corrections are smaller than
10mmag and the rms over the whole frame excluding a strip 200 pixels wide
along the edge is only about 4 mmag. Therefore, while flat-fielding problems on
FORS1 might result in errors larger than our stated goal of 3% photometry for
individual stars, statistically for random positions on the detector, the errors are
much smaller. A different strategy for achieving accurate relative photometry
with FORS1 is to concentrate on the centre part of the detector. For example,
within the central 4 x 4 arcmin of the detector, roughly one third of the detector
area, the difference between the minimum and the maximum of the correction
factor is about 13 mmag, and the rms is 2 mmag.

Comparison with FWII FWII used a similar procedure to the one used for
the current work. In Fig. 7 and 8, we compare the results of our fit to the
one in FWII. It can be seen that there is a good correlation between the two
flatfield correction frames from data taken more about 15 month apart. The
differences between the two determinations of f(x,y) are similar in magnitude
to the error estimates in f(z,y). This suggests that there is a long term stable
flatfield correction which can be applied to improve the photometric quality of
images taken with FORS1 in the R-band.

5. Improving the Master Flat

In Sec. 2.2. we have shown that a substantial component of the structure in the
master flatfield rotates with the adaptor rotator. It is unlikely that any feature
in the sensitivity map, i.e. the “true” flatfield, rotates. Therefore, it is most
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Figure 7. Comparison between the flatfield correction frames derived in the
current work and FWIL. Left: f(x,y) from FAP, center: from FWII, right:
the difference. The colour scale in all three panels is identical.
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Figure 8.  Pixel-by-pixel comparison of f(z,y) found by FWII and in the
current project. The gray level indicates the number of pixels with the corre-
sponding combination of values found by the two fits. The red line illustrates
a one-to-one correspondence of the plotted values. The error bars are the min-
imum and maximum rms uncertainty for f(x,y) estimated from the . The
differences between the two frames are comparable to the uncertainty in the
fits.

likely that the rotating feature is a defect in the master flats, e.g. caused by
light scattered on some structure connected with the rotator. In this case, the
derived flatfield correction should compensate for some of the structure found
in the master flat. In the left panel of Fig. 9, we compare the master flat with
the derived f(z,y) on a pixel-to-pixel basis. We find that there is a significant
correlation between the two frames. This suggests that the master flat could be
improved simply by removing its large scale pattern.

This motivated us to create the illumination-corrected flat described in
Sec. 3.2. We used the images flatfielded with this modified flat to re-measure
magnitudes and re-derive the flatfield correction factor. A pixel-by-pixel com-
parison of the illumination-corrected master flat with the re-derived correction
factor is shown in the right panel of Fig. 9. It can be seen that any correlation
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between flat and correction factor has successfully been removed, and that the
peak-to-peak values of the correction factor have become smaller. This demon-
strates that the master flat can be improved by this simple procedure. We also
tested the same procedure on the I-band data, and on the FWII data and found
similar results.
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Figure 9.  Pixel-by-pixel comparisons of f(x,y) with the flatfield (FF) used
to process the images before fitting f(z,y). Left: master flat versus derived
f(x,y), right: illumination-corrected flat versus f(z,y).

The standard stars on the images can be used to verify that the flat-fielding
is indeed improved by this procedure. For that purpose, we derived photomet-
ric solutions from the standard star measurements as described in Sec. 6., but
without using the flatfield correction factor f(z,y). The residuals as a func-
tion of detector position for the case of the regular master flat and that of the
illumination-corrected flat are compared in Fig. 10. It can be seen that the il-
lumination correction improves flatfield errors by as much as 50% in the centre
of the field. However, it also shows that even using the illumination-corrected
flats, significant flat-fielding errors remain and the flatfield correction procedure
is still needed to reduce residual flatfield errors to values below 1%.

We have also tried the same procedure using the rotation-corrected flat
shown in Fig. 3 but found no improvement over the standard master flat. We
therefore will not use that flat in the further analysis.

6. Absolute Photometry

6.1. Photometric Quality of Night

A crucial requirement for FAP was that observations were carried out under
photometric conditions. The judgement whether a night on Paranal is photo-
metric is done by the weather officer. This judgement is based on zero points
derived from observations with the various imaging cameras, and inspection of
the sky. Inspection of the sky is carried out by eye and with the help of MAS-
COT, a sky monitor which delivers optical images of the whole sky every three
minutes. For FAP, the photometric quality of the night can be judged from the
collected data. This might not be the case for science programmes which take
significantly fewer calibration observations during a night. If such a programme
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Figure 10.  Residuals from fit of photometric solution as a function of de-

tector position. Left, centre and right panels show the mean residuals as a
function of column x, row y and distance from the detector centre r. The red
points are derived using the regular master flat, and the green points used
the illumination-corrected master flat. No flatfield correction f(z,y) has been
applied. Error bars are the errors of the means based on error estimates for
the measured magnitudes and listed errors of the standard stars. Note that
the mean of all the residuals is by construction zero. In the leftmost panel,
the inner point contains fewer stars because it is based on a small area on the
detector.

Paranal on Sun, July 17, 2005

Tirne (UT)

Figure 11.  The rms flux as measured by the ASM monitor.

requires photometric conditions, it is essential that the observer can judge the
quality of the night objectively. This is of particular importance for service mode
observations.
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Figure 12.  Relative zero points of individual exposures of the Mark A field
as a function of airmass as determined from the simultaneous fit of f(x,y),
relative magnitudes of stars and the exposure zero points. No standard mag-
nitudes were used in deriving these data points. The solid line is the slope of
the extinction correction as determined from the fit to Stetson magnitudes of
stars. The rms of the deviations from this line is 6.8 mmag.

One of the tools to judge the quality of the night is the “VLT Astronomical
Site Monitor” (ASM!'). Figure 11 shows the ASM flux fluctuations during the
course of the night when the FA P observations were carried out. All FAP images
were taken after UT 2:20 when the rms of the fluctuations was less that 10 mmag,
and the mean rms fluctuation during that time was about 7mmag. This rms
from the ASM monitor can be compared to the flux fluctuations derived from
the observations.

The procedure described in Sec. 4.2. yields the relative zero point for each
image of the Mark A field. These zero points are already corrected for flat-
fielding errors and each one of them is based on the weighted average of more
than 1000 stars. The random errors of the relative zero points are therefore
extremely small, about one mmag. Changes in the relative zero points are
therefore a highly accurate measure of changes in the extinction between different
images.

Figure 12 shows the relative magnitude zero points for the Mark A images
as a function of airmass. The error estimate for each of the points based on the
measurement errors is smaller than the point size. Also shown is the slope of the
extinction curve derived from fields taken at higher airmasses, the details of this
determination will be discussed in Sec. 6.3. It can be seen that the slope of the
extinction curve is in excellent agreement with the variations of the zero point as
a function of airmass. The rms scatter of the zero points around the extinction

"http://archive.eso.org/asm/ambient-server
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curve is 6.8 mmag. This experiment confirms the excellent photometric quality
of the night completely independent of any standard star magnitudes.

The scatter of 6.8 mmag is a good measure of the fluctuations in the extinc-
tion within the 10sec exposures. Its value is similar to the flux rms measured
by the ASM monitor. It is tempting to conclude that the rms from the ASM
can be used as a proxy for expected rms fluctuations of the zero point. Whether
this is indeed the case warrants further investigation. For example, one area of
concern is its sensitivity to seeing changes.

6.2. Photometric Solution

The method used to find the can easily be modified to find a photometric solution
from the current data set. Instead of using an arbitrary zero point for each
star and each field, the photometric zero point, colour terms and extinction
coefficients are fitted. Specifically, we assumed that the instrumental magnitudes
r and the Stetson magnitudes R and I are related as

R-—r=z+ez+a-(R—I)+c-(R-1I) -z (3)

where x is the airmass and z, e, a and ¢ are parameters determined by the fitting.
Those parameters were fitted simultaneously with the flat-fielding correction.
The formalism is described in Appendix B.

We compared this solution to a separate fit of the correction frame f(z,y)
followed by a fit of the photometric solution. We found no differences in the
results. All results in this section are based on the illumination-corrected flat-
fields and the additional application of the flat field correction derived from all
detected stars.

Colour coefficients were fit using

r—i=c,+ce-x+co (R=I)+ce-(R—1I)-x+cy-(R—1)% (4)
where ¢, c., ¢4, ¢. and cg are the parameters of the fit.

6.3. Results

Colour Solution  The linear component of the colour solution (Eq. 4) is shown
in the left panel of Fig. 13. The scatter in the fit is about 28 mmag. This fit can
be used to replace R — I in Eq. (3) with its measured values. The uncertainty
in the true colour adds less than 3 mmag to the random error of the final R
magnitude.

Eztinction Solution  The resulting extinction solution is shown in right panel
of Fig. 13. The ESO Quality Control (QC) group derives a photometric zero
point assuming an extinction for each night. This QC zero point and extinction
for that night are also shown in Fig. 13. There is a small offset between the
normalisation of the QC extinction curve and the one derived here at airmass
around 1.2. This offset might be due to slight differences in the normalisation of
the flatfields, differences in the apertures used to measure magnitudes, and/or
differences in the colour coefficients. However, the assumed extinction in the
QC procedure introduces an additional error in the zero point which is much
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Figure 13.  Extinction and Colour solutions. Left: R — I colours listed by
Stetson versus the colours computed from the FAP data. Points in black use
the colours based only on a fit of the zero point and slope of the colour cor-
rection, whereas red points use the full airmass and quadratic terms. Right:
R — r corrected for colour and colour-dependent extinction as a function of
airmass. Each point is the weighted mean of all stars in one image. The
colour of each point indicates the Stetson field from which the point was de-
rived. The codes are: blue: Mark A, green: L 113, magenta: PG 1633 , cyan:
L 92. The solid line is the fit to the data points and the extrapolation to zero
airmass is shown to illustrate the magnitude zero point. For comparison, the
photometric zero point and assumed extinction from the QC pipeline for that
night is shown as a dotted line.

larger than the differences at airmass around 1.2. The extinction varies sub-
stantially from night to night, even when the nights are photometric. Therefore,
zero points derived using a mean extinction depend on the airmass of the mea-
sured standard field and are not useful for photometry. The true photometric
zero point above the atmosphere as derived from extrapolation of the extinction
curves probably varied much more slowly than the night-to-night variations of
the extinction. For this reason, when only a single photometric standard obser-
vation is available in a given night, the best practise is to derive the extinction
coefficient for that night by assuming the zero point has not changed from the
previous determination (cf. e.g. Harris 1981).

Residuals and Error Budget Sextractor computes error estimates oy for each
measured magnitude. The error includes the contribution of the readout noise
and Poisson noise, both for the pixels used to compute the stellar flux and
for those used to estimate the local background. The error estimates ranged
from 2 to 30 mmag. Stetson (2000) and Stetson (2006) list error estimates g
for individual standard stars based on repeated observations in different nights.
The error estimates for the stars used in this analysis range from 2 to 20 mmag.
By comparing these error estimates to the residuals of the extinction solution,
we can find an external estimate of the combined effect of all sources of errors
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Figure 14.  Upper panels: Residuals as function of the estimated magnitude

error. Lower panel: The v/Var of the residuals as a function of magnitude
error. The superimposed line corresponds to Var= (7mmag)? + o3,.

not included in o4 and og. For this purpose, we plotted the residuals from the
extinction solution as a function of the error estimate op; for each R —r. The
plot is shown in the upper panel of Fig. 14. The error estimate oy; was computed
as oy = \/02 + 02 It can be seen that the scatter in the residuals for small
estimated errors is less than 10 mmag and increases for larger ops. The lower
panel of Fig. 14 shows the rms of the residuals binned by error estimates. A
source of scatter in addition to the error estimate has to be assumed to account
for the scatter residuals. Assuming this additional scatter o, is independent of
magnitude, the total scatter in the residuals v VAR can be modelled as

VAR? = 03 + U?t + 02 (5)

The lower panel of Fig. 14 shows that a value of o, &~ 7mmag is consistent with
the residuals.

Sources for g, include extinction fluctuations o, colour transformation er-
rors 0. and residual flat-fielding errors oy¢. The total error estimate oy for our
magnitude measurements becomes therefore

at:\/ag—i-aa:\/ag—i-ag—i-ag—i-afcf (6)

In Sec. 6.1. we found that o, ~ 7mmag, and in Sec. 6.2. we estimated that
0. ~ 3mmag. Using 8 mmag as the upper limit for o,, we find from Eq. (6) an
upper limit on residual flat-fielding and other sources of errors of about 3 mmag.
We therefore conclude that extinction variations, statistical errors and errors in

the standard magnitudes account for most of the residuals of our photometric
solution.
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Figure 15. Distributions of zero points determined from two (red his-
togram) and three (blue histogram) standard observations. The dashed line
is a Gaussian with a o of 11 mmag.

6.4. How many Standard Field Observations are Necessary?

An important goal of FAP is to find a set of guidelines on how to achieve a
photometric accuracy of 3% or less. The photometric zero point is obviously an
important factor which determines the final accuracy of the magnitudes. The
FAP observations contain a large number of standard stars on each individual
image, and the number of calibration images is much bigger than the number
realistically taken for the calibration of normal science observations. An impor-
tant part of the photometric guidelines are the necessary minimum number of
standard fields needed to achieve a certain photometric accuracy.

FAP imaged four different Stetson fields. The magnitude and colour range,
and the consistency of derived zero points seems to be similar for all fields (see
e.g. Fig. 13). In addition, we searched for and did not find any evidence for
different behaviour of the residuals as a function of position, magnitude or colour.
Therefore, there is no evidence than anyone of the three fields Mark A, L92 or
P(G1633 is better suited for photometry than any other. As discussed in Sec 3.1.,
the particular region we used within the L.113 field was not optimally chosen.
Excluding the L1133 field from the analysis in this section did not change any
of the conclusions. For that reason, we do not distinguish between the different
fields in the following discussion.

If a night is known to be photometric, e.g. by consulting the ASM, a
minimum of 2 calibration fields at different airmasses are needed to find the
extinction coefficient. The optimum strategy is that one of them is at as low an
airmass as possible, while the other one is at the highest possible airmass. A
realistic goal is to observe the low airmass field at an airmass less than 1.3, and
the high airmass field at airmass above 2.

To estimate the errors in the zero points from sets of only two standard
field observations, we re-computed the zero points from subsets of the FAP
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data. We used every combination of two standard fields which satisfy the above
constraints on the airmasses. The distribution of the resulting zero points is
shown in Fig. 15. The distribution has an almost Gaussian peak but also a long
non-Gaussian tail. In about 10% of all cases, the errors on the resulting zero
points is larger than 3%. We therefore conclude that observation of only two
standard fields is insufficient to photometrically calibrate a night to sufficient
accuracy.

We then repeated the experiment using 3 standard fields. In each case, only
one of the three fields was chosen to be at airmass lower than 1.3, because the
gain from additional low airmass fields was judged to be small. The resulting
distribution of zero points is plotted in Fig. 15. Also shown is a Gaussian
with the same mean, standard deviation and normalisation as the zero point
distribution. It can be seen that the distribution resembles closely the Gaussian
with a standard deviation of 11 mmag. In contrast to the previous experiment
with only two standard fields, all zero point errors are less than 3%. This result
strongly suggests that 3 photometric standard fields, chosen with the strategy
outlined above, lead to an accuracy of about 11 mmag.

The x? per degree of freedom of the deviation between the Gaussian fit and
the histogram in Fig. 15 based on count statistics is about 0.85. This means
than the distribution of zero points when using 3 different standard fields very
closely follows a Gaussian distribution. The error budget discussed in Sec. 6.3.
implies that the dominant error on the mean magnitude of all stars in any of
the standard fields are fluctuations in the extinction which affects all stars of an
image in the same way. The only way to improve the magnitude zero point is
therefore to increase the number of independent exposures. The fact that the
distribution of the residuals shown in Fig. 15 is normal suggests that adding
more stars will improve the accuracy of the zero point, and the final error in the

zero point oz is
3
oz ~ 11lmmag -, | — (7)
ng

where ny is the number of standard field observations. This formula should
apply if the number of standard stars in each field is large enough so that

1
/271 < 11 mmag (8)
9S3TD

and the exposures sample the airmass between 1 and 2 uniformly. For a typi-
cal magnitude uncertainty ogrp of 10 mmag, about 30 or more standard stars
per field are needed to satisfy Eq. (8). This is one of the reasons to use the
Stetson standard fields as opposed to fields with fewer known magnitudes. Un-
fortunately, the FAP data do not include a sufficient number of independent
observation to test formula (7) for ny larger than 3.

The zero point error is a systematic additive error which affects all derived
magnitudes in the same manner. The exact impact of such an error depends
on the science application. In most cases, a programme with a stated goal to
achieve 3 percent photometry requires that the systematic error is significantly
less than 3%. The 10 mmag accuracy for the zero point might therefore not be
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sufficient for many photometric programmes even when they can accept much
higher random errors. Eq. (7) can be used to guide observers. For example,
the goal to achieve a photometric zero point better than 20 mmag with 99.7%
confidence implies a 3o error for the zero point of 20 mmag. Eq. (7) implies that
eight standard fields are needed.

6.5. Three Percent Photometry

The above discussion shows that 3% photometry can be reached with FORS1
with moderate effort. For the purpose of this discussion, three percent photom-
etry is defined as a total 1o error including both random errors on individual
star and systematic errors due to zero point. With three calibration fields, the
error in the zero point is 11 mmag (Sec. 6.4.). The maximum possible systematic
error is 3mmag (Sec. 6.3.). This leaves 1/30 mmag? — 11 mmag? — 3 mmag? =
27.8 mmag for the possible random error in the magnitude of the science tar-
gets. A standard 1 hour Observing Block results in 50 minutes of open shutter
exposure time. Using the ESO Exposure Time Calculator, we find that under
standard conditions, the 3% goal can be reached down to a R band magnitude
of 24.3.

7. Conclusions

The main result of FAP is that it is possible to achieve 3% photometry with
FORS1 with moderate effort. To achieve this accuracy, corrections to the stan-
dard master flats have to be applied, and a sufficient number of standard field
observations have to be obtained. The Stetson fields seem to be well suited
for that purpose. For service observations at ESO, observations of photometric
standards in addition to the routine nightly calibration are charged to the sci-
ence time. Observers therefore need to consider these calibration requirements
during proposal writing and include them into the request for observing time.
The results of Sec.6.4. can be used estimate the necessary observing time for
calibration.

APPENDIX

A Formulae to fit F'(z,y) from stars without known magnitudes

In general, each measured magnitude on any of the images can be written as
Myy = MI/ + Zu — f(x7y) (9)

where M, is the magnitude of star v within the chosen band, m,,, is its instru-

mental magnitude measured on image u, and z, is the zero point of image .
The quantity f(z,y) is F(x,y) expressed in magnitudes, i.e.

f(z,y) = —2.5log F(x,y) (10)
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The specific model for f(z,y) used for the fit to the current data set is a
polynomial of order o,

f(z,y) = ZZpijxiyo_i. (11)

i=0 0

The magnitude for the n+ 1 different observed stars, M, where v =0...n,
and the zero points of the m + 1 different images, z,, p = 0...m, are further
free parameters. Two of the three parameters poo, Mo and zy are redundant
and can be arbitrarily fixed. Choosing My = zp = 0, the full set of equations 11
can be written as

A-p=M (12)

where p and M are the vectors for the parameter and vector instrumental mag-
nitudes,

Po,o
P10
Po,1 m0,0
: mi,0
Dk m2,0
M1
p= 2|, M= | mypo (13)
: mo,1
M, mi,1
21 .
Z|
0 Map,m
Zm
and the matrix A is
P0,0 P1,0 P0,1 s Pkl My Mz - My oz 22 Zm

0 1 %00  Y0,0 - 6 06,0 0 0o - 0 0o 0 0

1 1 1,0 yi,0 - x’f’oyll,o 1 0 0 0 0 0

2 1 2.0 Y2,0 Z3.0Y2,0 0 1 0 0 0 0

: : . :

n 1 Tn,0 Yn,0 Ty 1Yn,1 0 0 1 0 0 0
n+1 1 T1,1 Y1,1 T 1Y1,1 0 0 0 0 0
n+2 1 ®21 Y21 - @ by 1 0o - 0 1 0 - 0
nXxm 1 Tn,m  Yn,m s (C’:”myln’m 0 0 1 0 0 1

(14)

The parameters corresponding to each column are shown on the top of the
matrix. Note that only a subset of all stars is contained in any single image, the
labelling of the rows on the left side of the matrix is therefore not necessarily
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consecutive. The total number of free parameters to be determined n,, is

0*+30+2

o
np=n+m+y (i+1)=n+m+ 5

1=0

(15)

whereas the number of equations is identical to the number of measured in-
strumental magnitudes. If the number of instrumental magnitudes per image is
>> 2, then Eq. (12) is an over-determined set of linear equations.

(SVD) can be used to find the unknown zero points, magnitudes and model
parameters simultaneously in a least-square sense. SVD works by decomposing
the matrix A into a square diagonal matrix w with positive or zero elements,
and two orthogonal matrices u and v,

A=u-w-w' (16)
Then the least square solution for M can be found as
p=v-w . -u"-M (17)

where w’ is a matrix which consists of a the inverse of a n, x n, submatrix of
w and is set to zero elsewhere (see Press et al. 1992, for details).

One consideration for solving this set of equations is to assign proper weights
to each equation. Eq. (12) still holds when each row in the matrix A as well as
corresponding elements of the vector of instrumental magnitudes are multiplied
by an arbitrary weight. We weighted each equation taking into account both
the uncertainty in the measured instrumental magnitudes and the local density
of stars.

The estimated uncertainty o,, in the instrumental magnitude of the pih
star in the u'? field as given by Sextractor were used to compute a weight w,y,,

1

W = O'I%M (18)
A significant source of uncertainty in the fit of our model to the zero points
is the difference between the true shape of f(z,y) and that of the model poly-
nomial. If an unweighted fit of a polynomial were used, more weight would be
given to regions with high density of observed stars. This would introduce biases
in the fit which can be avoided by adjusting the weights according to the local
density of stars. Specifically, we have used the inverse of the local density of w,,

to compute a second weight w,,,

1
> W
where the sum in this equation is taken over all magnitude measurements in

cells of 128 x 128 pixels on the detector. The final weight used for each equation
was

Wp

(19)

W = Wy * Wy (20)
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B Formulae to fit F(z,y) and extinction solution simultaneously

The formulae in Appendix A can easily be modified when the magnitudes of
stars are known. The magnitude zero points for individual stars are replaced
with the colour term, the zero points for individual images are replaced by the
extinction terms, and the zero of the polynomial pg o is replace by the constant
magnitude zero point to find the parameters of Eq. (3).

The parameter vector p and M are in this case

My —mg
c My —mip
p1,0 My —map
Pbo,1 .
p= : , M= | M, —muo (21)
pk)l MO — m071
€ My —mq
a .
c :
Mn - mn,m
and the matrix A is
A =
Z pio  Po1 Dkl e a c
kol
0 L 200 Yo -+ ZooeYoo Xo ¢ XoXco
k1
1 I zi0 w0 - 2ioyi0 Xo a XoxXa
k
L xo0 Y20 -+ Xggysg Xo 2 Xo X
' b 22
n 1 Tn,o Yno - Ln1Yn,1 X1 ¢ Xixey, ( )
ko1
n+1 1 r11 o Y11 o 11 X1 g Xixa
o1
n -+ 2 1 To1 Y21 v 5 1Y21 X1 ¢ XiXe
k l
nxm 1 Inm Ynm " TomYnm Xm ¢ Xy Xcp

where X, is the airmass of the vth image, and ¢, is the R-I colour of the
vth star. The least square solution for this set of linear equations can be found
as above using Eq. 17.
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