Imaging of High-z galaxies with the ELT

Simulations: results

P.Rosati, M.Puech, S.Toft (ESO)

SciWG meeting - Oct 7, 2008

Science Drives and Goals

- Obtain morphological information of primordial (z>4, up to ~10) galaxies to provide insights on mode and times scales of galaxy early assembly (sizes, SF densities, signs of interactions, AGN, etc.)
 - ▶ primordial galaxy are expected to be knotty/high SB (lensing observations, local LBGs, theory) ⇒ need ~10 mas resolution
- Detection limits of most distant galaxies (deep fields, depth vs area), high-z SNe etc.
- Investigate competition/synergy with JWST (nearIR imaging) by identifying ELT niche

<u>Method</u>: Use M.Puech's pipeline by projecting data cubes to produce continuum images (in H, K bands)

Galaxy templates: HST/ACS images of z≲0.2 (late-type/lrr) galaxies

- pixel size allows suitable spatial resolution at z>~4
- H-band at z=4 probes rest-frame wl of ACS obs (no K-corr)

Empirical relations used to extrapolate and rescale *fluxes and sizes* of local templates $K_s(M_s,z)$, $R_H(z)$, $R_H(\lambda)$, $L_K(R_H)$ (H-K_{AB} neglected), intrinsic SB increases with z (quite uncertain!)

<u>Method</u>: Use M.Puech's pipeline by projecting data cubes to produce continuum images (in H, K bands)

Galaxy templates: HST/ACS images of z≲0.2 (late-type/lrr) galaxies

- pixel size allows suitable spatial resolution at z > 4
- H-band at z=4 probes rest-frame wl of ACS obs (no K-corr)

Empirical relations used to extrapolate and rescale *fluxes and sizes* of local templates $K_s(M_s,z)$, $R_H(z)$, $R_H(\lambda)$, $L_K(R_H)$ (H-K_{AB} neglected), intrinsic SB increases with z (quite uncertain!)

<u>Method</u>: Use M.Puech's pipeline by projecting data cubes to produce continuum images (in H, K bands)

Galaxy templates: HST/ACS images of z≲0.2 (late-type/lrr) galaxies

- pixel size allows suitable spatial resolution at z > 4
- H-band at z=4 probes rest-frame wl of ACS obs (no K-corr)

Empirical relations used to extrapolate and rescale *fluxes and sizes* of local templates $K_s(M_s,z)$, $R_H(z)$, $R_H(\lambda)$, $L_K(R_H)$ (H-K_{AB} neglected), intrinsic SB increases with z (quite uncertain!)

<u>Method</u>: Use M.Puech's pipeline by projecting data cubes to produce continuum images (in H, K bands)

Galaxy templates: HST/ACS images of z≲0.2 (late-type/lrr) galaxies

- pixel size allows suitable spatial resolution at z > 4
- H-band at z=4 probes rest-frame wl of ACS obs (no K-corr)

Empirical relations used to extrapolate and rescale *fluxes and sizes* of local templates $K_s(M_s,z)$, $R_H(z)$, $R_H(\lambda)$, $L_K(R_H)$ (H-K_{AB} neglected), intrinsic SB increases with z (quite uncertain!)

Reference case: M_s^* galaxy at z=4, H_{AB} =24.3

<u>Method</u>: Use M.Puech's pipeline by projecting data cubes to produce continuum images (in H, K bands)

Galaxy templates: HST/ACS images of z≲0.2 (late-type/lrr) galaxies

- pixel size allows suitable spatial resolution at z > 4
- H-band at z=4 probes rest-frame wl of ACS obs (no K-corr)

Empirical relations used to extrapolate and rescale *fluxes and sizes* of local templates $K_s(M_s,z)$, $R_H(z)$, $R_H(\lambda)$, $L_K(R_H)$ (H-K_{AB} neglected), intrinsic SB increases with z (quite uncertain!)

```
Reference case: M_s^* galaxy at z=4, H_{AB}=24.3
```

```
Instrument params (default)
```

D=42m ExpTime=10h Pixel=30 (4) mas PSFs: MCAO (0.8" seeing): 50% SR (GLAO also used) Sky=15.8 AB/arcsec² in H (continuum+OH), 10x lower between OH-lines (from Joe's plot/data) (incl. thermal bckgrd which dominates in K_s)

No. 1, 2008

ACS follow-up of "super compact UV luminous galaxies" (UVLGs) by Heckman et al. (from GALEX + SLOAN), local analogs of z~3 LBGs

Exploration of Physical and Observing parameters

S/N (M/M*=0.1, 0.5, 1.0, 5, 10, z=2,4,6,8, {p_i})

Reference case (M*, z=4, 42m, 30 mas, 10h, MCAO-PSF, H-band, All-templates)

Each template as a fnct(M,z) as observed with JWST in F150W, F200W

LBG032845 z=4 (ref.case)

ACS/HRC pxl at z=0.14 = 70pc \rightarrow 10 mas at z=4 H-band at z=4 \rightarrow 330 nm rest-frame ~M* at z=4 \rightarrow H_{AB}=24.3

S/N maps

0.5 M*

1.0 M*

LBG032845 z=4 (ref.case)

JWST/NIRCam F150W

ACS/HRC pxl at z=0.14 = 70pc \rightarrow 10 mas at z=4 H-band at $z=4 \rightarrow 330 \text{ nm}$ rest-frame ~M* at z=4 \rightarrow H_{AB}=24.3

0.5 M*

1.0 M*

LBG040208 z=4 (ref.case)

ACS/HRC pxl at z=0.14 = 70pc \rightarrow 10 mas at z=4 H-band at z=4 \rightarrow 330 nm rest-frame ~M* at z=4 \rightarrow H_{AB}=24.3

0.5 M*

145

1.0 M*

0.1 M*

LBG040208 z=4 (ref.case)

ACS/HRC pxl at z=0.14 = 70pc \rightarrow 10 mas at z=4 H-band at $z=4 \rightarrow 330 \text{ nm}$ rest-frame ~M* at z=4 \rightarrow H_{AB}=24.3

0.1 M*

0.5 M*

1.0 M*

5 M*

10 M*

JWST/NIRCam F150W

Tadpole at z=4

ACS/WFC pxl at z=0.03 = 30pc \rightarrow 4 mas at z=4 H-band at z=4 \rightarrow 330 nm rest-frame (\neq obs 474 nm) \sim M* at z=4 \rightarrow H_{AB}=24.3

0.1 M*

0.5 M*

1.0 M*

5 M*

Tadpole at z=4

ACS/WFC pxl at z=0.03 = $30pc \rightarrow 4 mas$ at z=4 H-band at $z=4 \rightarrow 330 \text{ nm}$ rest-frame (\neq obs 474 nm) ~M* at z=4 \rightarrow H_{AB}=24.3

JWST/NIRCam F150W

0.5 M*

1.0 M*

LBG032845 at z=8 (ref.case)

S/N maps

0.1 M*

10 M*

0.5 M*

1.0 M*

LBG032845 at z=8 (ref.case)

JWST/NIRCam F150W

S/N maps

0.1 M*

0.5 M*

1.0 M*

5 M*

"Skylens": a shapelet-based imaging simulator Meneghetti, Grazian et al. 2008 (AA, 482, 403)

• Shapelets decomposition of a set of templates galaxies extracted fro GOODS/UDF-like ACS fields

- Shapelets decomposition of a set of templates galaxies extracted fro GOODS/UDF-like ACS fields
- Observed LFs(z) for 4-galaxy types (SEDs)+extrapolations

- Shapelets decomposition of a set of templates galaxies extracted fro GOODS/UDF-like ACS fields
- Observed LFs(z) for 4-galaxy types (SEDs)+extrapolations
- Size vs mag empirical relation

- Shapelets decomposition of a set of templates galaxies extracted fro GOODS/UDF-like ACS fields
- Observed LFs(z) for 4-galaxy types (SEDs)+extrapolations
- Size vs mag empirical relation
- Galaxies morphologies are generated by shuffling shapelet coefficients in template library

- Shapelets decomposition of a set of templates galaxies extracted fro GOODS/UDF-like ACS fields
- Observed LFs(z) for 4-galaxy types (SEDs)+extrapolations
- Size vs mag empirical relation
- Galaxies morphologies are generated by shuffling shapelet coefficients in template library
- Reproduce number counts and size distributions observed in HST deep fields

- Shapelets decomposition of a set of templates galaxies extracted fro GOODS/UDF-like ACS fields
- Observed LFs(z) for 4-galaxy types (SEDs)+extrapolations
- Size vs mag empirical relation
- Galaxies morphologies are generate coefficients in template library
- Reproduce number counts and size HST deep fields
- Used for LBT, Dune, ..

Summary and Next steps

- ELT performance on imaging of high-z galaxies critically depends on unknown SB distribution of primordial galaxies
- Sanity/consistency checks? (MAD deep field, or GC MAD observations)
- FoM of imaging performance: compute morphological parameters (e.g. Asymetty A, Concentration C, Smoothness/Clumpiness S) and compare input vs output values (ELT({p_i}) vs JWST)
- Adapting skylens (developed for Dune) to ELT case (Grazian, Meneghetti by the end of Nov) to produce deep fields
- Suggestions ??