The Physics and Mass Assembly of Galaxies

First Simulations

(P.Rosati, <u>M.Puech</u>, A.Cimatti, S.Toft, J.Liske)

ELT SWG meeting - April 1-2, 2007

Science Goals

- Provide the ultimate test of galaxy formation theories
- Spatially resolved spectroscopy of a sample of ~1000 massive galaxies at 2<z<~5
 - ^{$\overleftarrow{\varphi}}$ direct kinematics of stars and gas in the first generation of massive galaxies in the range 0.1<Mstar<5x10¹¹ M \odot </sup>
 - 🗳 dynamical masses, ages, metallicities
 - [©] differential evolution of disk and spheroidal components as a funct. of z
 - physical channels of mass assembly from since z~5

Simulations grid

Method

- <u>Input</u> for 3D Spectroscopy simulations (Mathieu P.)
 - (M, z) → K_{AB} and Σ(gals/arcmin²) from observed n(M,z), n(L_{UV},z)
 + V(x,y) from kinematic observations of local galaxies or models
 - **PSFs** for a given AO case (from Joe L.) + spatial/spec sampling
 - **Sky** spectrum (site?)
- <u>Output</u> of simulations: Velocity maps, line/continuum imaging
- Analysis of simulations (to be done)
 - Velocity gradients, rotation curves
 - Kinematic classifications (mergers vs disks vs in/outflows)
 - Dynamical masses, R_e, SF rates, dust extinction maps
 - Figures of merit + diagnostic diagrams (Tully-Fisher relations, etc..)
 - Scaling relations for early-type galaxies for modest AO performance?
- Requirements on AO trade-offs, spatial sampling, telescope diameter, spec.resolution, multiplexing, FoV, ...

Observations (GHASP-Amram et al.) OR

Just need to rescale these maps in terms of: -size: typical size of distant galaxies (Bouwens et al. 2004,...) -flux: continuum integrated magnitude & EW of the emission line

> (*a*) $z \sim 1.6$: $m_{AB}(H) = 22.5 \& EW(H\alpha) \sim 50 Å$ (*a*) $z \sim 4$: $m_{AB}(H) = 24.5 \& EW([OII]) \sim 30 Å$

3D datacube

3D datacube

Different PSFs with increasing Ensquared Energy

Here: MOAO PSFs (Fusco, Neichel et al.; ONERA)

EE	Pitch	FoV _{WFS}
12	1.00	4.00
13	1.00	3.00
15	1.00	2.00
21	1.00	1.00
24	1.00	0.50
32	1.00	0.25
33	1.00	0.00
37	0.75	0.00

Scientific goal: mass assembly driver,

z=4 ; Rotating Disk; 50 mas/pix

z~0

Tintg=200hr

z=4 ; Ongoing major merger; 50mas/pix

Tintg=200hr

Pixel size ?

z=4 Tintg=24hr

Figure of merit to separate rotating disks from major mergers

GIRAFFE (Flores et al. 2006): 6x4, 0.52"/pix IFUs

