## Update on the ELT Science Case and Science Requirements ESO/OPTICON SWG Activity and DS WP 02000 Isobel Hook & Piero Salinari

ELT Design Study – Contract No 011863 A technology development programme funded by the European Community under its Framework Programme 6



- Based on SWG report April 2006
  - Strong dependence on optical and near-IR wavelengths.
  - Almost all the cases require AO of some type
  - Several cases require AO at visible wavelengths (<1 μm).</li>
     Should be an upgrade option.
  - Simulations are required to understand requirements in several areas.
  - Hemisphere of the site: most cases do not have a strong preference - those that do generally prefer a Southern site.
  - Most of the required instrumentation capabilities have been studied as part of the ELT design study and/or the OWL instrumentation studies. One notable exception is moderate/high resolution optical spectroscopy.



### Requirements report- wavelength range

|                             | Visible     | Vis+NIR     | NIR         | NIR+TIR       |
|-----------------------------|-------------|-------------|-------------|---------------|
|                             | 320-1100 nm | 320-2500 nm | 1100-2500nm | 1100 >2500 nm |
| Planets and Stars           |             |             |             |               |
| All Science cases           | 2           | 5           | 4           | 1             |
| PROMINENT Science cases     | 1           | 3           |             | 1             |
|                             |             |             |             |               |
| Galaxies and Cosmology      |             |             |             |               |
| All Science cases           | 8           | 7           |             |               |
| PROMINENT Science cases     | 3           | 1           |             |               |
|                             |             |             |             |               |
| Galaxies and Cosmology      |             |             |             |               |
| All Science cases           | 6           | 10          |             |               |
| PROMINENT Science cases     | 2           | 4           |             |               |
|                             |             |             |             |               |
| Total (all 43 observations) | 16          | 22          | 4           | 1             |
| Total (15 prominent obs.)   | 6           | 8           | 0           | 1             |

#### Note: Without optical only 5/43 cases could be done



|                           | None or        | NGS AO     | GLAO | MCAO | Total |
|---------------------------|----------------|------------|------|------|-------|
|                           | not<br>defined | or<br>LTAO |      |      |       |
| AO modes in SWG<br>report | 10             | 17         | 14   | 2    | 43    |
| Re-assessed AO<br>Mode    | 5              | 14         | 4    | 20   | 43    |

- Most cases (33/43) mentioned AO of some sort
- In many cases the AO mode did not match requirements
- Very few cases mentioned MCAO but the IQ specifications require it (or MOAO)
- Is this because MCAO was not an option in the ETC?
- In some cases AO would help reduce instrument size

| Case       | Cases requiring "optical" AO                                                            | Wavelength range<br>(µm) | AO mode in SWG<br>report | Re-assessed AO mode |
|------------|-----------------------------------------------------------------------------------------|--------------------------|--------------------------|---------------------|
| <b>S</b> 3 | Extra solar planets                                                                     | 0.8-2                    | NGS extreme AO           | NGS extreme AO      |
| S4         | free-floating planets                                                                   | 0.7-2.4                  | LTAO-GLAO                | MCAO                |
| <b>S</b> 5 | Stellar clusters (incl. galactic centre)                                                | 0.7- 5                   | GLAO                     | MCAO                |
| <b>S9</b>  | Circumstellar disks                                                                     | 0.7 (or 2) – 20          | NGSAO-LTAO               | NGSAO-LTAO          |
| S10        | Stellar remnants                                                                        | optical – NIR            | NGSAO-LTAO               | NGSAO-LTAO          |
| G1         | Intracluster population                                                                 | 0.5-1                    | LTAO                     | MCAO                |
| G2         | Planetary nebulae and galaxies                                                          | 0.3-1                    | LTAO                     | MCAO                |
| G3         | Stellar clusters and the evolution of galaxies                                          | 0.4-5                    | LTAO                     | MCAO                |
| G4         | Resolved stellar populations<br>- colour-magnitude diagram<br>- abundances + kinematics | 0.8(0.6)-3<br>0.45-0.75  | LTAO<br>??               | MCAO<br>LTAO        |
| G5         | Spectral observations of star clusters                                                  | 0.4-2.5                  | GLAO                     | GLAO                |
| G6         | Young, massive star clusters                                                            | 0.4-0.6                  | GLAO                     | MCAO                |
| G7         | The IMF throughout the Local Group                                                      | 0.8-1.6                  | МСАО                     | MCAO                |
| G8         | Star formation history through SNe                                                      | 0.6-2.5                  | GLAO+LTAO                | GLAO+LTAO           |
| C1         | Dark Energy: Type Ia SNe                                                                | 0.8-2.5                  | MCAO+LTAO                | MCAO+LTAO           |
| C4         | First Light- the highest redshift galaxies                                              | 0.9-2                    | GLAO                     | MCAO                |
| C5         | Galaxies and AGN at the end of reionisation                                             | 0.9-2                    | GLAO                     | MCAO                |
| C7         | Metallicity of the low-density IGM                                                      | 0.55-0.7                 | NA                       | LTAO                |
| C8         | IGM tomography                                                                          | 0.4-0.7                  | GLAO                     | GLAO                |
| C9         | Galaxy formation and evolution                                                          | 0.6-2.5                  | LTAO?                    | LTAO?               |
| C11        | Gravitational Lensing                                                                   | 0.4-2.5                  | ??                       | МСАО                |
| C12        | Deep galaxy studies at z=2.5                                                            | 0.4-2.5                  |                          | MCAO (GLAO?)        |



|    | Science cases with specified targets   | Target location         | North/South |
|----|----------------------------------------|-------------------------|-------------|
| S1 | Solar System Comets                    | Ecliptic                | Either      |
| S2 | Extra solar system comets              | -60 < d < +10           | South       |
| S5 | Stellar clusters (inc galactic centre) | Galactic centre, d= -29 | South       |
| S7 | Origin of massive stars                | Galactic plane          | Either      |
| S8 | LMC field star population              | LMC/SMC, d= -70         | South       |
| G1 | Intracluster population                | -50 < d < +20           | South       |
| G7 | The IMF throughout the Local Group     | Local Group             | Either      |



| Parameter                   | Requirement      | Goal                                       |
|-----------------------------|------------------|--------------------------------------------|
| Telescope Diameter          | TBD (*)          |                                            |
| Wavelength<br>Short<br>Long | 0.4 μm<br>5μm    | 0.38 μm (*) <mark>(note a)</mark><br>20 μm |
| AO modes                    | LTAO, GLAO, MCAO | MOAO,<br>Visible AO                        |
| Field of View               | 5' x 5'          | 10' x 10' (*) (note b)                     |

#### \*= Requires more work

- (a) From Asteroseismology and PNe– justification not given
- (b) From highest-z galaxies justification not completely clear

- recoverable to some extent with multiple pointings



# Questions arising from the April 2006 science case document

- Need to review the AO modes required for each science case
- First Galaxies and Physics of galaxies cases: What is the optimal AO mode for detecting and studying them (depends on spatial profile)?
- What is the expected image quality of the telescope without AO? (will it be seeing limited, or worse?) This will have an effect on whether AO should be used for cases such as CODEX.
- Resolved Stellar populations: In LTAO mode the PSF variation will be significant even over an imaging field of only ~1 arcsec. This should be simulated in order to decide whether MCAO would be better suited to this case.
- Is case S5 considering individual BDs or clusters?
- What is the justification for the short wavelength requirements from the asteroseismology and planetary nebulae cases?
- What is the justification for the FOV from the "first galaxies" case?



- Q1 2005 KO Meeting Done
- Q2 2005 Initial Report Done (delivered doc Q3 2005)
  - Based on OPTICON case for 50-100m
- Q1 2006 Iteration #1 Done (delivered doc Q1 2007)
  - Delay due to re-baselineing activity
- Q2 2007 Iteration #2 Status report on DRM
  - Due ~ now
- Q1 2008 Final release

| Exo-planets                                                                  |                                 |          |
|------------------------------------------------------------------------------|---------------------------------|----------|
| - Direct detection                                                           | Raphael Rebolo                  | Proposal |
| - Radial velocity detection                                                  |                                 |          |
| Detection of new Earths                                                      | Stephane Udry                   | Abstract |
| Rocky planets in the HZ of low-mass stars and brown dwarfs                   | Maria Osario (Rafael Rebolo)    | Abstract |
| Characterisation of transiting planets                                       | Didier Queloz                   | Abstract |
| Circumstellar disks                                                          |                                 |          |
| - 10-20 micron imaging                                                       | Mark McCaughrean                | Abstract |
| - CO fundamental spectroscopy                                                | Mark McCaughrean                | Abstract |
| The Initial Mass Function in Clusters                                        |                                 |          |
| - I - Characterizing the lowest mass freely floating objects                 | Fernando Comeron                | Proposal |
| - II - The centers of massive star clusters (?)                              | Hans Zinnecker                  | ?        |
| - III - The Low-mass IMF at the Magellanic Clouds                            | Fernando Comeron                | Proposal |
| - IV - Giant-planet Mass objects in the LMC                                  | Fernando Comeron                | Proposal |
| Resolved Stellar Populations                                                 |                                 |          |
| - Colour magnitude diagrams                                                  | Eline Tolstoy                   | Proposal |
| - Abundances and kinematics (low R)                                          | Eline Tolstoy                   | ?        |
| - Detailed abundances (high R)                                               | Vanessa Hill                    | Abstract |
| Black Holes                                                                  |                                 |          |
| - Spatially resolved spectroscopy                                            | Wolfram Freudling               | Proposal |
| - RV test of GR in LMXBs                                                     | Rafael Rebolo                   | Abstract |
| The physics of galaxies                                                      |                                 |          |
| <ul> <li>The physics and Mass Assembly of galaxies to z = 6</li> </ul>       | Piero Rosati                    | Proposal |
| - High Resolution imaging of high-redshift galaxies                          | Marijn Franx                    | Proposal |
| <ul> <li>Integrated spectroscopy of early-type galaxies at z&gt;1</li> </ul> | Andrea Cimatti                  | Proposal |
| The highest redshift galaxies at $z > 6$                                     | Marijn Franx                    | Proposal |
| Metallicity of the low-density IGM                                           | Jacqueline Bergeron             | Proposal |
| Dynamical measurement of Expansion                                           | Luca Pasquini (Martin Haehnelt) | Proposal |



- May 07 Complete one iteration of 3 demo cases
- May 07 Complete proposals for 9 prominent cases
  - 12 proposals written
  - Now need to prioritise simulations
- 2007–09 Use DRM to aid design choices
- (2008/09 possibly FP7 DRM activity)
- Q2 2009 community call for proposals
- Q2 2009 community workshop
- End 2009 Updated science case with simulations



## THE END