

Report on work done for NIO GSMT book

Simon Morris With Cedric Lacey, Robert Content, Marc Dubbledam

Simulated NGST Image (Im 2001)

2'x2'

10 hr exposure

Ellis et al. z=5.6 lensed Lyman Alpha emitters Brighter object observed I=26, lensed by factor ~33

'Natural Seeing'

- •Exposure 4x8 hours (~10⁵ seconds), sky I=19.9
- 27% sky-to-hard-disk throughput
- 50% of object flux in 0.6x0.6 arcsec box
- All of line flux in 2 spectral pixels (1.7 nm)
- 5σ Detection for $3x10^{-19}$ ergs cm⁻² s⁻¹
- Z=6 (Observed λ =851.2 nm) gives 1x10⁴¹ ergs s⁻¹ luminosity

Emission Line Sensitivity Calculation

AO corrected and 'diffraction limited'

- Assumption as in previous slide, except:
- 50% of object flux in 0.2x0.2 arcsec box
- 5σ Detection for $1x10^{-19}$ ergs cm⁻² s⁻¹
- Z=6 (Observed λ =851.2 nm) gives $3x10^{40}$ ergs s⁻¹ luminosity
- 50% of object flux in 0.006x0.006 arcsec box (50% EE diameter for 30m Airy Pattern at 790 nm)
- N.B. this also implies a different plate scale to sample this properly.
- 5σ Detection for $3x10^{-21}$ ergs cm⁻² s⁻¹
- Z=6 (Observed λ =851.2 nm) gives 1x10³⁹ ergs s⁻¹ luminosity

Semi-analytic surface density prediction

Semi-analytic continuum mag prediction

Fluorescent Lyman Alpha Emitters

- Can we detect neutral hydrogen clouds excited by the general UV background?
- Gould and Weinberg 1996, ApJ, 468
- Bunker, Marleau and Graham 1998, AJ, 116, 2086

Re-Calculate above using most recent estimates for the UV background

• Calculations done in mathCAD, electronic version of this (and also the sensitivity calculation) will be included in the final delivery.

• Algorithm:

• Assume 'consensus' cosmology

• Use Haardt and Madau (1996) functional form for UV background strength and shape as function of z, but with latest version for parameters (Haardt, Private Comunication, CUBA code)

• Use Power law approx. to hydrogen photoionisation cross section (simplifies code, but not necessary)

• Consider clouds both optically thin and optically thick to UV background as separate cases using Gould and Weinberg formalism

- Calculate cloud luminosities given a characteristic size
- Convert these to fluxes and surface brightnesses given the redshift

• Given known number of absorbers as a function of column density and redshift, and assuming the same characteristic size, calculate volume density of clouds expected satisfying given flux and surface brightness limits.

GSMT

Figure 9 A view of the back of the telescope, with some structures removed for clarity, showing several configurations in which the optical path is directed to notional instruments by flat mirrors.

Ballpark Mass Budget (no lightweighing)

Fused Silica glass ~ 2.2 g/cm³ \Rightarrow Single Spectrograph glass mass ~ 400 kg \Rightarrow 1000 kg per spectrograph \Rightarrow 24,000 kg for all spectrographs \Rightarrow 16,000 kg for remaining structure \Rightarrow 40,000 kg for whole instrument