(The Formation of) Stars and Planets

Mark McCaughrean & Hans Zinnecker
Astrophysikalisches Institut Potsdam

Extremely Large Telescope Science Case Meeting Oxford University, April 28 2003

The isolated star formation paradigm

Class 0: 10⁴ yrs; 10-10⁴ AU; 10-300 K

Class I-II: 10⁵⁻⁶ yrs; 1-1000 AU; 100-3000 K

Class II-III: 10⁶⁻⁷ yrs; 1-100 AU; 100-5000 K

Class IV: 10⁷⁻⁹ yrs; 1-100 AU; 100-5000 K

ELTs: requirements, advantages, and caveats

- ★ Should be excellent in near-IR and mid-IR
 - ★ Crucial for star/planet formation and characterisation
- ★ Large collecting area yields high sensitivity
 - ★ For imaging and low-res spectroscopy, NGST is similar or better at 1-2μm and much better at 5-30μm
- ★ Large telescope diameter yields high resolution
 - ★ Order of magnitude better than VLT/NGST, similar to VLTI; requires extreme AO performance
- ★ Single telescope yields filled *u,v*-plane imaging
 - ★ Vital for complex sources, crowded regions
- ★ MCAO yields wide field-of-view
 - \star Essential to boost A Ω product for surveys and clusters

Scaling relations for telescope sensitivity

Background limited case:

$$\frac{S}{N} \propto \frac{D}{\theta} \times \sqrt{\frac{\eta}{B}}$$

Speed
$$\propto \frac{D^2}{\theta^2} \times \frac{\eta}{B}$$

Detector limited case:

$$\frac{S}{N} \propto D^2 \times \eta$$

Speed
$$\propto D^4 \times \eta^2$$

- D Telescope diameter
- heta Delivered image size

- B Background
- η System throughput

Some fiducial numbers

- ★ Scale VLT at 2µm to 50 metre diameter telescope
- ★ Seeing-limited case (300 mas FWHM):
 - ★ Spatial resolution: 50AU at Taurus-Auriga; 150AU at Orion; 1500AU at inner galaxy; 15000AU at LMC
 - ★ Sensitivity: 3σ , 1hr point source limit $K_s=23.0$ Equivalent to $1M_{Jup}$ at 1Myr at Orion (500pc)
- ★ AO case (10 mas FWHM, with 50% of point source flux in diffraction-limited core, 50% in halo):
 - ★ Spatial resolution: 1.5AU at Taurus-Auriga; 5AU at Orion; 50AU at inner galaxy; 500AU at LMC
 - ★ Sensitivity: 3σ , 1hr point source limit $K_s=26.0$ Equivalent to $1M_{Jup}$ at 1Myr at M16 (2kpc)

ELT "killer apps" for exoplanet research?

★ Direct imaging of exoplanetary systems

★ Around single stars or binaries; in habitable zones; hot planets around young stars; terrestrial planets with 100m?

★ Spectroscopy of exoplanets

★ Chemistry; weather; rotation; biogenic tracers; extend RV surveys over much greater volumes, ages, environments

★ Exoplanets in unusual places

★ Population II stars (clue to formation mechanism); white dwarfs (survivors of stellar evolution); free-floating objects (microlensed true planets and/or sub brown dwarfs)

★ Planets in the making: circumstellar disks

★ Gaps; timescale for gas dissipation; dust agglomeration; ice processing; location of giant planet formation

ELT "killer apps" in star formation?

★ Cores and protostars

★ Extinction mapping to arcsec scales; structure, chemistry, kinematics of cores; tracing infall

★ Jets and outflows

★ Delineating jet formation zone; detailed time-lapse studies of time-variable outflow and interaction with medium

★ Stellar/substellar IMF and the impact of environment

★ Trace IMF across Milky Way (to 1M_{Jup}at Orion; HBL everywhere); LMC; nearby galaxies; confusion-limited

★ Formation and impact of massive stars

★ Through disks or collisions?; effects of wind-wind, wind-cloud, wind-ISM, ionising interactions

Other "local" ELT "killer apps"?

- ★ High spatial resolution studies of planets, moons, asteroids, KBOs/TNOs, and comets
 - ★ Imaging the solar system (10km at Mars, 75km at Saturn, >300km at Pluto); surface and atmospheric changes: weather, vulcanism, atmospheric freeze-out; D/H ratio and mix of ice species for TNOs
- ★ Mass function of black holes and neutron stars
 - ★ Radial velocity curves for BH/disk and companion
- **★** Physics of neutron stars
 - ★ Visible light variability; millisec resolution at V=26
- **★** Follow-up microlensing sources
 - ★ Cold white dwarfs; brown dwarfs

The keys to an effective ELT science case

- ★ For a general-purpose observatory, must identify vital, complementary role in major themes
 - ★ E.g. "Origins" theme driving NGST and ALMA; search for terrestrial planets driving Eddington, Kepler, Darwin, TPF
- ★ Must identify "killer applications" that use unique combination of ELT capabilities
 - ★ Deep, high spatial near/mid-IR resolution imaging of complex regions; medium- to high-resolution spectroscopy of extremely faint sources, with either MOS or IFU
- ★ Conversely, must identify lower limit to capabilities (e.g. aperture) which can deliver the "killer apps"
- ★ Reasonable upper limit for large projects (1Msec?)