ELT SCIENCE CASES: COSMOLOGY

- Perpectives after NGST and CELT time-frame 2010-2015
- Targets provided for high spatial and spectral resolution by other telescopes: NGST, CELT, SWIFT and successors, ALMA
- Synergy with space- and ground-based facilities:

high z AGN $z \leq 2$ normal galaxies	XEUS
$\begin{array}{ll} \text{high } z \text{ QSOs} \\ \text{high } z \text{ starbursts} \end{array}$	ALMA
redshifted HI	\mathbf{SKA}

Spatial Resolution: Diffraction Limit

at
$$\lambda=1\mu$$
 and adopting $\Omega_{\mathrm{M}}=0.3,~\Omega_{\Lambda}=0.7,~h=0.65$

		ı
element at $z=4$	Resolution (mas)	Telescope
270	35	NGST (6m)
ST ST	7	$30\mathrm{m}$
16	2.1	30m 100 m
	270 55	35 7 S 270 55

Sensitivity

Imaging point source, diffraction limit, S/N \sim 5-10, $\Delta t = 1 \text{ hr}$

 $\frac{\text{mag}}{\text{FoV}}$ mag tel $m R_{AB} \sim 29.5$ $J_{
m AB}\sim 30$ NGST $R_{AB}\sim 31$ 30m $J_{
m AB}\sim 32$ $R_{AB}\sim 35$ 100m

 $4.6' \times 4.6'$

 $\Phi \sim 2' \; (\mathrm{AO}/2\mu) \quad \Phi \sim 2' \; (\mathrm{AO}/2\mu) \; ?$

Spectroscopy Res~300 point source, diffraction limit, $S/N \sim 20$, $\Delta t = 2 \text{ hr}$

 mag $\mathrm{J_{AB}}\sim25$ $\mathrm{R_{AB}}\sim26.5$ $\mathrm{R_{AB}}\sim30.5$ tel NGST 30m100m

Spectroscopy Kes~10000 point source, diffraction limit, $S/N \sim 20$, $\Delta t = 10 \text{ hr}$

mag tel $m R_{AB} \sim 25$ 30m $m R_{AB} \sim 28.5$ 100m

Typical Magnitudes for various classes of objects

- SNIa

 $m I_{AB} \sim 26.5 \ at \ z = 1.7 \
m I_{AB} \sim 29.0 \ at \ z \sim 4 \
m$

- LBGs

 $m R_{AB} \sim 24.5 ~at ~z_{spec} \sim 3 \
m I_{AB} \sim 25.0 ~at ~z_{spec} \sim 4 \
m$

 L^{\star} galaxy

 $m R_{AB} \sim 26.5 \ at \ z \sim 4$

-z = 6.56 galaxy

unlensed flux at JHK' \sim 60nJy or AB=27.2

- GRB afterglows

flux independent of z at 2μ

theoretical expectations at z=10: $f(2\mu)\sim 30\mu J$ or $K_{AB}\sim 20.3$ at t=1 day $f(2\mu) \sim 1.5 \mu J$ or $K_{AB} \sim 23.6$ at t=10 days

existence of weak (\sim 20 times fainter) afterglows

high fraction of dark afterglows: NGST

Number of sources and surface densities

- GRBs 2 yr nominal life-time $2004/5 \rightarrow \text{successors}$? SWIFT is expected to detect ~100 bursts per yr
- QSOs $R \sim 24 \text{ at } z \sim 2\text{-}4: 75 \text{ deg}^{-2}$ $R \sim 24 \text{ at } z \sim 2\text{-}4:5000 \text{ deg}^{-2}$
- Compact galaxies L^{\star} galaxy at $z \sim 3$ -4, half-light radius ~ 1 -2 kpc $\rightarrow r \sim 0.2$ -0.4 arcsec $R \sim 26.5 \text{ at } z \sim 2-4 : 15 \text{ arcmin}^{-2}$
- Probing large-scale structures on small scales at $z \sim 3$ -4, 1 Mpc $\rightarrow \sim 3$ arcmin

Re-ionization epoch

1. First QSOs

high spectral resolution

IGM enrichment : CIV forest $z \le 13.2$, CII $z \le 15.5$

Ionized bubbles : some transmitted flux within the Lylpha troughs

Targets: J & H dropouts – wide field deep IR surveys (VISTA), NGST, synergy with XEUS

advantage of a 100m

2. GRBs as above plus

physics of GRB hosts: time dependent OI, CII CIV absorptions GRB rate (SFR)

Targets: opt/near IR robotic telescopes, future γ -ray missions

2004-5 synergy between SWIFT, VLT and Keck

dark GRBs: NGST

Re-ionization epoch (continued)

3. First Starburts

physics of of the first galaxies: $M \sim 10^8 M_{\odot}$, $AB \geq 30$ at $z \sim 10$ sizes ~ 100 pc, $\sigma_{\rm V}$ a few 10 km s⁻¹

low spectral resolution: ct, break and He II1640 emission Ly α fully quenched

high spectral resolution: stellar absorption features

Targets: NGST, wide-field near IR with ELTs narrow-band imaging with ELTs make use of gravitational amplification

results from WMAP advantage of a 100m synergy with ALMA and Herschel

High redshift supernovae

- Cosmological parameters Ω_{Λ} need $z(\mathrm{SN}) > 1$ but WMAP, Planck, SNAP
- Cosmic evolution of SN rate, Comparison with SFR evolution
- Properties of host galaxies compared to those of GRBs

Targets: imaging campaigns with VLT and ELTs low resolution spectroscopy in the optical and near IR 100m for z < 4.530m for z < 2

Large-scale structures at $z\sim2$ -4.5

IGM overdensities detected at $z\sim3$ Epoch of formation of sheets and proto-clusters

3D mapping of the IGM on scales $\geq 0.5 \mathrm{\ Mpc}$

high resolution spectroscopy of QSOs and bright, compact galaxies Ly α and C IV forests in close-by sightlines multi-slit/multi-fiber spectrograph

advantage 100m: target surface density at z > 3.5

synergy with XEUS: AGN are also tracers of large-scale structures

- Do galaxies trace the same mass concentrations than the IGM

low resolution, high multiplexing spectroscopy Ly α emitters and LBGs down to L_{\star} at $z \sim 4$

synergy with SKA advantage 100m: target magnitude at z > 3.5

Dark matter distribution at $z\sim1\text{-}2.5$

Weak gravitational lensing/cosmic shear on galaxy-halo scales probing lower DM masses and smaller scales than currently results compared to halo masses derived from kinematics

foreground objects: high z clusters, groups, galaxy pairs, high spatial resolution: mass reconstruction massive Es, isolated galaxies with X-ray halos

background objects: selection by colour and dropout techniques galaxy density N(z)

imaging at the diffraction limit for large FoVs ~ 2 Mpc or 6 arcmin at $z \sim 1\text{-}2$

advantage NGST, 30m

Link between AGN activity and galaxy formation

Black hole masses and AGN accretion disk sizes

$$M_{
m BH} \sim 6 imes 10^{-3} M_{
m bulge}$$

 $M_{
m BH} \propto \sigma_{\star}^{lpha} \quad {
m with} \; lpha \sim 4 \text{-} 4.8$

 σ_{\star} : stellar velocity dispersion at $r > r_{\rm D}$

 $r_{
m D}$: the BH mass starts to dominate the gravitational potential perturbations measured out to $\sim 10 r_{
m D}$

 $M_{\rm BH} \sim 3 \times 10^9 M_{\odot}, \, r_{\rm D} \sim 6 \,\, {\rm pc \,\, for \,\, } \sigma_{\rm V} \sim 300 \,\, {\rm km \,\, s^{-1}}$ Search for and rotation curves of AGN nuclear gas disks advantage of a 100m for $z \geq 0.5$

AGN host galaxy

dust content, SFR and environment morphology, gas kinematics, chemical composition

synergy with ALMA and Herschel

Physics of galaxies at $z \sim 1-5$

- Galaxy evolution connection to large-scale structure development epoch of bulge and spiral disk formation mass function

outflows: ejection of metals in the IGM

- **Physics** chemical evolution mass-luminosity relation kinematics: ordered or chaotic motions (mergers) fundamental Plane, Tully-Fisher relation
- Diagnostics emission lines: [O $_{\rm II}$], Heta, [O $_{\rm II}$], Hlpha z>4.9, 3.5, 3.4, 2.4 stellar absorption lines (age or metallicity indicators)

Physics of galaxies at $z\sim 1\text{--}5$ (continued)

multiple IFUs near-IR low and high resolution spectroscopy

NGST as efficient as a 30m for low resolution spectroscopy for galaxies smooth on the 100mas scale in 2 hrs S/N ~ 20 for $K_{AB} \sim 25$

low resolution spectroscopy limit of a 30m: $K_{AB} \sim 26$ if presence of ≤ 30 mas clumps

synergy with ALMA and SKA for molecular gas and galaxies with very high SFR: $f(1.3\text{mm})=20~\mu\text{Jy}$, $S/N\sim 5~\text{in }3.7~\text{hr}$

Conclusions

	+	++	m high~res~IFUs	id
	+	+	low res IFUs	atially resolved spectroscopy
+	+	+	low res spectra	• galaxies at $z \sim 1-5$
		+	id & spatial res	at $z > 0.5$
	+	+	high res spectra	• BH masses at $z < 0.5$
		+	id	at $z \sim 2-4$
	+	+	low res spectra	at $z < 2$
				• SNIa, Ω_{Λ} , SN rate
+	+		imaging	DM distribution at $z \sim 1-2.5$
	+	++	id	at $z \sim 3.5-4.5$
	+	+	high res spectra	IGM mapping at $z \sim 2-3.5$
		+	imaging	sub L^{\star} galaxies at high z
+	+	+	low res spectra	id plus GRS
	+	++	high res spectra	• reionization epoch QSOs & galaxies at $z \sim 10-15$
!	,	1	i	
NGST	$30\mathrm{m}$	$100\mathrm{m}$	obs. mode	science goal

References

Reionization of the universe

Santos & Loeb 2003, astro-ph/0304130 (UV background) Wyithe & Loeb 2003, astro-ph/0302297 (reionization by massive stars) Wyithe & Loeb 2003, ApJ 586, 693 (reionization of H $\scriptstyle
m I$ and He $\scriptstyle
m II$) Bruscoli et al. 2002, MNRAS 330, L43 (reionization epoch) Furlanetto & Loeb 2002, ApJ 579, 1 (21 cm forest before reionization) Theuns et al. 2002, ApJ 574, L111 (He II reionization)

GRBs

Schaefer 2003, ApJ 583, L67 (GRB Hubble Diagram to z=4.5) Guidorzi et al. 2003, A&A 401, 491 (a dark GRB) Moller et al. 2002, A&A 396, L21 (GRB absorption spectrum) Watson et al. 2002, A&A 393, L1 (GRB X-ray afterglow) Schaefer et al. 2001, ApJ 563, L123 (GRB z and luminosities) Lamb & reichart 2000, ApJ 536, 1 (GRBs as probes of high z universe) Ciardi & Loeb 2000, ApJ 540, 687 (predictions high z GRBs)

Highest z QSOs

Freudling et al. 2003, astro-ph/0303424 (Fe enrichment in high z QSOs) White et al. 2003, astro-ph/0303476 (IGM at z > 6) Wilner et al. 2002, AJ 123, 1288 (search for CO)

References (continued)

Highest z galaxy

Hu et al. 2002, ApJ 586, L75 (plus erratum 2002, ApJ 576, L99)

High z starburts

Lagache et al. 2003, MNRAS 338, 555 (predictions for Herschel, Planck and ALMA)

AGNs

Steidel et al. 2002, ApJ 576, 653 (opt selected: X-ray properties)

Black hole masses

Margorrian et al. 1998, AJ 115, 2285

Ferrarese & Merritt 2000, ApJ 539, L9

Sarzi et al. 2001, ApJ 550, 65

Shields et al. 2003, ApJ 583, 124

Wyithe & Loeb 2003, astro-ph/0304156

LBGs

Adelberger et al. 2003, ApJ 584, 45 (galaxies and the IGM)

Nandra et al. 2002, ApJ 576, 625 (X-ray properties)

SNIa

Leibundgut 2001, ARA&A 39, 67 Riess et al. 2001, ApJ 560, 49 (z=1.7 SN)