Science case for Extremely Large Telescopes

ELT science case – Development

- Leiden case assumed 100m OWL
- Now need to define science priorities
- Then define hard requirements on:
 - Telescope size
 - FOV
 - Wavelength range of operation
 - Shortest λ for AO, Longest wavelength submm?
 - Telescope site (which hemisphere?)
 - Highest contrast required (e.g. for planet detection)
- Are there critical points among these parameters which enable key science?
- How does ELT compare with other facilities? (JWST, ALMA)

Then..

- Consider science that can be done with this facility
- e.g., Leiden 2001 science case
 - Took 100m ("OWL") as starting point
 - Lists science projects that can be done
- But include more..
 - Quantitative calculations
 - Clear statements of assumptions

ELT science case – Design requirements

- For design study we need
 - List of science priorities
 - List of hard constraints
 - Quantitative assessment of requirements
 - Assumptions must be clear
 - A table of requirements by science project, e.g. elt_req3
- Then tradeoffs can be made

ELT science case timeline

- April 2003
 - OPTICON I3 proposal sent in (includes science case funding)
 - Oxford meeting
- July 2003
 - Draft FP6 design study proposal
 - Outline of essential science objectives
 - Plan for assessing main criteria (telescope size etc)
- October 2003
 - FP6 design study bid deadline
- End 2005
 - Draft set of top level requirements and priorities, possibly presented as a function of telescope diameter
- End 2006
 - Consolidated set of top level requirements (outcome of the I3)
 - = the basis of a fast-track preliminary design.

Science case subject areas

- Stars & Planets
- Stars & Galaxies
- Galaxies and cosmology

