ELT Instrumentation Study

Adrian Russell (Workpackage Manager) Roland Bacon (Deputy WP Manager) Andreas Quirrenbach (Deputy WP Manager) Michael Redfern (Deputy WP Manager) Tim Hawarden Suzanne Ramsay Howat

Proposed Scope of the Study

Four point instrument designs

Identify key drivers on telescope design

Broad Look at other concepts

Plus the "what have we forgotten?" WP

ADCs

Point Design Deliverables

- Link to the Science Case
- Design drivers on Telescope and AO systems
- Outline Design of instrument
 - indicating mass, volume, moments, handling, data rates etc
- Technical Risk Analysis
- Functions and Performance Requirements Document (FPRD)
- Outline Project Plan, including possible Work Breakdown Plan (over likely participant organisations)

Point Design Deliverables (2)

- Indicative costing, with effort (FTE) and hardware requirements
- Operational Concepts Definition Document (OCDD) setting out optimum operational mode
 - Classical?
 - "Particle Physics"?
- Calibration requirements statement
- Performance Simulator
- Assessment of resource requirements from telescope infrastructure
 - power, cryogen consumption, labour, likely roomtemperature heat dissipation

WFSPEC

- Wide Field seeing-limited (or boundary-layer corrected) SPECtrometer
- Spectra of many objects over a field of several arcminutes

 Large Scale Structure in the Universe, and its evolution
 Evolution of the chemical structure of the IGM
 Redshift surveys of very faint and distant galaxies

 Matching a seeing-limited image (or even a BLC image) to a reasonably small number of detector pixels is hard!

 either impossibly fast final F/ratios
 much larger physical pixels than currently in use
 or use of smaller (sub)pupils

WFSPEC (2)

- Current assumptions with BLC: Delivered images will have 50% EED ${\sim}0."25$ over a ${\sim}10'$ FOV from 0.5 μm to 2.2 μm
- Issues
 - Do we need an *imager*? (not currently included in this instrument concept) cf other large-spatial-volume options such as a smaller, much wider-field telescope
 - Information required for the assessment of likely performance of boundary-layer correction AO systems is lacking and getting it should be part of the WP

Planet Finder

• High dynamic-range (coronagraphic) imager/spectrometer

• "The Killer App"

- Direct detection of planets around a large number of nearby stars, including *earth-like* planets
- Time-dependent photometry and spectroscopy of planetary atmospheres
- Searching for biomarkers in the Earth-like examples

• Challenges

- Suppression of stray light, removal of the bright source, maximum possible concentration of the light from the star into the image core by very high-order AO (Strehl ratios >0.7 are sought)
- Spectroscopy will be hard and photon-counting detectors are likely to be desirable

Planet Finder (2)

 Current AO assumptions: Strehl of >0.7 over a 5" FOV at 0.7, 1.0 μm

- High-order AO is at the core of this instrument
- Need close communication with (and participation in?) the AO WP studies
- Issues
 - The effects of segmentation on low-level image structure
 - Study of spectroscopic approaches, especially for the detection of (exo-) telluric features in the presence of earth's atmosphere is required

MOMSI

- Optical /NIR Multi-Object & Multi-field Spectrometer & Imager
- Core role applicable to many science programmes
- Obtain images and/or spectra of many (exceedingly faint) objects over a field of order an arcminute using MCAO
 - How, when and from what present-day galaxies formed (deduced from their present sub-populations of stars)
 - Evolution of galaxies and pre-galactic objects: their structure, dynamics, and composition, from very high redshifts
 - Detection of the earliest luminous objects in the universe

MOMSI (2)

- For spectroscopy, picking off sub-fields will be essential
 Link to Smart Focal Planes JRP
- For imaging, covering the FOV with detectors may be impractical
 - $\sim\!\!10^{12}$ pixels needed to sample the diffraction limit over an $\sim\!\!arcmin$ field
 - ~4000 of the largest current NIR arrays (2k×2k)
 - Alternative pick off subfields for *imaging* as well
 - Allows modularity (but modules will still be physically large)
- Current AO assumptions: Strehl ranging from 0.2 at 0.5µm to 0.5 at 2.2µm with little PSF degradation over a 1' FOV
- Issues
 - Modular vs monolithic design approaches
 - Likely that the K band will be essential implies that pickoff mechanisms, etc will need to operate cryogenically

MIDIR

- MID-IR diffraction-limited high-resolution spectrometer/imager
- The considerable sensitivity and extreme angular resolving power of an AO-corrected ELT in the mid-IR makes it potentially a powerful complement to large space telescopes such as the JWST
- The design of such an instrument is likely to be related to that of the Multi-Object MCAO Spectrometer/Imager
- Current AO assumptions: 1' FOV as for MOMSI but for Strehl ranging from 0.5 to 0.8

MIDIR (2) – Issues

- CELT study for a mid-IR prime focus instrument with its own AO system should be examined
- Though the OWL design is AO-friendly it has 5 surfaces ahead of any instrument, so for realistic coatings the overall emissivity is unlikely to be below 10%
 - A cold AO system may be necessary
 - This is a potential cost driver
- Strong pressure for a high dry site
- Large-format high-background detectors needed
 - Could be a substantial cost driver (development programme)
- Pressure to include twilight and daytime operations

Outline designs

- For instruments not selected for Point Designs
- Innovative instrument designs
 - Ensure that no new and original ideas likely to be important for ELT instrumentation have been omitted

• HiTRI – high time-resolution photo(polari)meter spectrometer

- Expected only single point sources (optical pulsars, shortperiods variables of several classes, AGNs and Blazars)
- Photometric, polarimetric and time-resolved spectroscopic variations
- Novel detector technologies will be explored (part of the "detectors" JRP covers this area)

Outline Designs (2)

• HISPEC – O/NIR high spectral resolution instrument

- Absorption lines cosmology of elements other than hydrogen (how the heavy elements in the ISM/IGM/ICM evolved)
- Stellar dynamics in nearby galaxies
- Detailed examination of the physics of the galactic ISM
- The field size required is TBD science input needed
- For several reasons (e.g. acquisition, efficiency) it should probably employ at least one IFU (perhaps a single MOMSI pickoff) even if it is a single-object instrument

Outline Designs (3)

• SCOWL – (SCUBA-3) submillimetre imager

- SCOWL will carry out the first all-sky submm surveys at resolutions comparable to the Schmidt surveys in the optical (~10⁶ gains over ALMA for this purpose)
- It would provide the first deep observations at the peak of the FIR spectral energy distribution (200µm)
- SCOWL could be an ideal poor-seeing and cirrus backup instrument
- It would employ large arrays of TESs being developed for SCUBA-2

Outline Designs (4)

- GRB-catcher fast-response broad-band imaging spectrometer
 - This instrument is designed for extremely rapid observations (ideally, response time of seconds: changeover during slew) of objects such a Gamma Ray Bursters which evolve on timescales of seconds to minutes
 - Probably one or more IFUs able to secure images and moderate resolution spectra in a range of simultaneous wavebands
 - Range from the blue end of the visible though the mid-IR
 - Each will probably require its own ADC and AO facility
 - Challenging instrument to design
 - Compromises in image quality may be needed in order to secure fast response times

Atmospheric Dispersion Correction

- For work in the Optical and NIR a new level of ADC will be required if milliarcsec resolution is to be achieved
- Serious constraints on the design of such systems
 - May require location in collimated beams
 - Optical components transmissive and will be large
 - Beyond ~1.6 µm will need to be cooled
 - Control may require real-time sensing
 - may add a dimension to the requirements on AO systems

• Issues

- Short-timescale chromatic atmospheric effects and development of schemes for monitoring them
- May be a serious shortage of specialist glasses