Black Hole Winds

- Paul O'Brien[†]
- James Reeves*
- Ken Pounds[†]
- Martin Ward[†]
- Kim Page[†]

[†]X-ray & Observational Astronomy Group Department of Physics & Astronomy University of Leicester *NASA, GSFC

AGN – the standard model

PDS456: Most luminous nearby QSO Radio-quiet, $L_{BOL} = 10^{47} \text{ erg s}^{-1}$, z= 0.184

RXTE Spectrum + Lightcurve

XMM-Newton & Beppo-SAX Observations

• RXTE/ASCA:

- 1. Strong iron K edge at 8.7 keV
- 2. Rapid variability
- 3. Strong "hot" (ionised) absorber

Consistent with high accretion rate object

- XMM-Newton:
 - EPIC CCD Images and Spectra to study iron edge
 - RGS grating spectroscopy to study the absorber
- Beppo-SAX:
 - monitor the variable X-ray continuum

X-ray variability of PDS 456

Observed properties

- Large flares ~ 10⁵⁰ 10⁵¹ erg d⁻¹
- MECS flux ×2 increase in 30 ksec
- Implies size $< 3R_s$ (for $\sim 10^9 M_{\odot}$)

Magnetic reconnection in corona

- Driven by K.E. of inner disc
- Enhanced by high accretion-rate and mass
- Radial flux tubes shear in inner disc then reconnect ⇒energy

XMM-Newton EPIC hard X-ray spectrum of PDS 456

XMM-Newton RGS Spectrum of PDS 456

XSTAR model fit to PDS 456

Derive $\xi \sim 10^3$ and $N_H \sim 10^{24}$ cm⁻² outflowing at ~0.15c ! If hard X-rays driving outflow, mass-loss rate ~ 10 M_{\odot} yr⁻¹ For 10% covering factor, outflow K.E. ~ 10⁴⁶ erg s⁻¹ (10% L_{bol})

HST Spectra of PDS 456 & 3C273

Comparison of H β and Ly α in PDS 456

Is PDS 456 unique?

Quasar PG1211+143 (z=0.0809) (Pounds et al. 2003)

XMM-Newton data reveal a large, highly ionised outflow

 ξ ~ 10^{3.4} and N_H ~ 5x10²³ cm⁻² outflowing at ~0.1c

```
Mass-loss rate ~ 0.1 M_{\odot} yr<sup>-1</sup>
```

K.E. ~ 10^{43} erg s⁻¹ (10% L_x)

Similar flows in PG0844+349 (Pounds et al. 2003) and in the BAL quasars APM08279+5255 & PG1115+080 (Chartas et al. 2003)

Outflow geometry and driving mechanism

Flow along disk plane (BAL) ?

Flow along BH axis?

- Radiation driven wind? Usual model for BALs. But, hard to drive large, high-ionisation, outflows. Need bound-free and/or Compton scattering. Implies large fraction of photon energy driving flow.
- Magnetic field driven wind? Significant energy in magnetic field in PDS456. 'Low velocity' version of 'radio jets'?

Implications of Black Hole Winds

- Observed flows extract significant fraction of bolometric luminosity.
- Large amount of matter and energy driven into surroundings.
- Could "create" BLR, NLR, warm absorbers etc.
- Outflows may occur during build-up of black-hole mass period of super-Eddington accretion.
- Most galaxy central BH growth thought to occur in early Universe. PDS456 an exceptional low-redshift quasar.
- Outflows could link growth of central BH with galaxy bulge mass (King, 2003, ApJ, 596, L27).

Keck K-band image of PDS 456

(Yun et al., 2003)

University of

Open questions

- What does outflow depend on (accretion-rate, B-field, BH spin...)?
- Outflow direction: along the BH rotation axis or disk plane?
- What do outflows do to the BLR, NLR, host galaxy, etc.?
- Do outflows link radio-quiet/radio-loud AGN (outflow \Leftrightarrow jet)
- •Require spatially-resolved data on scale of outflows, BLR, NLR...
- Must understand outflows in relation to fueling+host galaxy structure.
- How do AGN outflows relate to other systems (e.g. ULXs)?

Require high spatial-resolution observations

