ELT: Stars+Planets Summary

Rafael Rebolo & Hans Zinnecker IAC AIP

Outline

- Exoplanets
 - Terrestrial planets in habitable zones "Exo-earths"
 - Giant planets: evolution and characterisation
 - Planetary systems
- Our Solar System
 - Mapping planets, moons and asteroids
 - Transneptunian objects
 - Comets and the Oort cloud
- Stars and disks
 - Formation of stars and protoplanetary disks
 - The lives of stars
 - Compact objects: neutron stars and black holes in the Galaxy
 - -- Microlenses

<u>Requirements</u>

- FoV
- Spatial resolution
- Spectral resolution
- Lambda
- Observations
- Target density
- Special requirements
- Dynamic range constraint
- Comparison of 30m, 50m, 100m
- Observing time needed
- Time frame constraint

Terrestrial planets
in habitable zones
"Exo-earths"

- Challenges
 - Adaptive Optics
 - Planetary imaging
 - suppresion of star light by a factor $>10^9$
 - noise treatment
 - speckle, star photon noise, etc.

Exoplanets

Terrestrial planets
in habitable zones
"Exo-earths"

- Goals: Detecting "exo-earths" around solar type stars up to 50 pc (1 AU → 20 mas)
 - Spectroscopic characterization of biomarkers: optical and near IR
 - Molecular oxygen bands "B" absorption complex at 760 nm
 - Clorophyle cut off at 725 nm
 - Water vapour bands

• Terrestrial planets in habitable zones "Exo-earths"

Preliminary Requirements:

Extreme AO @ 700 nm Suppresion of star light :coronography/ differential imaging, other?

Photometry I-band Spectroscopy 700-2200 nm (R>20) FoV < 2 arcsec

Action: establish a working group that provides consistent modelling of PSF, AO, speckle and other error noise budget, etc. Gilmozzi, Gratton, Chelli and others

- Giant planets: evolution, characterization and rings
 - Mature (non-self luminous) giant gas planets
 - Warm Jupiters @ 1 AU of solar type stars out to 50 pc
 - Earth-like moons in the habitable zone:
 - Reflex velocity curve amplitude of 60 m/s, P~ days
 - Detection of transits
 - Methane spectroscopy
 - Young giant planets (nearby stars)
 - Brighter than old planets by several orders of magnitude
 - Free-floating planets in star clusters (in the field?)
 - Binary planets

New requirement: optical or near IR spectroscopy (R~10000) mid IR spectroscopy

Exoplanets in Reflection and Shadow

😹 ANU

Penny D. Sackett RSAA, Mt Stromlo Observatory

Arnold & Schneider 2004, A&A, 420, 1153

Ring size SE -5 いっちいろい 5 S.D.

11/12/2007

Our Solar System

- Mapping planets, moons and asteroids
 - Large and nearby asteroids
 - Complete surface maps showing topography and geological indicators at surface resolution of a few km
 - Small asteroids
 - Resolve main-belt objects with size down to ~10 km
 - Major and minor moons
 - Multiwavelength surface coverage of previously unstudied
 - Trans-neptunian objects
 - Does cometary activity occur
 - D/H ratios of the surface ices. Is the same in the Kuiper belt objects than in comets from the Oort cloud?
 - Was the terrestrial hydrosphere seeded from Oort of Kuiper belt objects?
 - Binary objects, masses and densities

Our Solar System

- Surface and atmospheric changes
 - Evolution of vulcanism in lo
 - Activation of the Centaurus
 - Surface activity in Triton
 - The collapse of the atmosphere of Pluto
 - Freezing in the 2000-2020 period

Stars and disks

- Formation of stars and planetary systems
 - Birthplaces: fine structure, kinematics and chemistry of molecular clouds
 - Inner discs
 - The central 30 AU
 - Variations of molecular abundances with radial position
 - Gaps in discs
 - Embedded Young Stellar Objects
 - Class I-II
 - Origin of brown dwarfs
 - Outflow dynamics and moving shadows

Requirement: IFUs High spectral resolution IR Laser guide stars

Stars and disks

- The lives of stars
 - Early phases
 - Hot cores and compact HII regions
 - Mature phase:outflows
 - Normal and peculiar stars:
 - resolved stellar features
 - multiplicity
 - Asteroseismology
 - Chemical composition
 - Constraints on nucleosynthesis
 - nucleocosmochronology

Stars and disks

- The death of stars
 - Mass function of black holes and neutron stars
 - Optical/near IR identification of LMXBs everywhere in the Galaxy: about 100 will be identified during the lifetime of the ELT.
 - Dynamical masses of stellar black holes and neutron stars: constraints on equation of state
 - Isolated neutron stars
 - Fast photometry (30 ms periods)
 - high time resolution spectroscopy
 - Black holes in Globular Clusters
 - Dispersion velocities of stars in the cores
 - Optical Astrometry with a precision of 50 microarcsec
 - Stellar orbits around black holes
 - The Center of the Milky Way

