Three topics in star formation

1. The Initial Mass Function of Star Formation in Massive Clusters

Stephen Strom, Knut Olsen, Joan Najita, and Robert Blum
GSMT SWG and ESO ELT SWG Joint Meeting May 17, 2004

Probing the IMF: Goals

- Quantify the IMF in rich, dense star-forming regions
- dominant contributor to total stellar content of galaxies
- Understand the relationship between IMF; initial conditions

Critical to modeling star-formation in the early universe

Probing the IMF-Measurements

- JHK photometry
- MCAO images at high Strehl (~ 0.7 at K-band)
- IFU spectroscopy at $\mathrm{R} \sim 1000$ provides spectral types
- Spectral types + photometry yield:
- $\mathrm{N}\left(\mathrm{A}_{\mathrm{v}}\right)$
- statistical model of $\mathrm{N}(\mathrm{K})$
- N (M) for assumed age

Probing the IMF: Measurements

AURA NEW INITIATIVES OFFICE III
Galactic Center Superclusters: d = 10 kpc

Probing the IMF: Measurements

LMC Massive Cluster: d = 200 kpc

R 136
Stellar density ~ 10x Orion Nebula Cluster

Probing the IMF: Measurements

Stellar Birthlines for Differing $\mathrm{dM}_{\mathrm{acc}} / \mathrm{dt}$

How is $\mathrm{dM}_{\mathrm{acc}} / \mathrm{dt}$ related to [Fe/H]; stellar density?

Probing the IMF: Current Status

- Best available data: HST probes of Arches (MWG); R136 (LMC)
- IMF range limited to $\mathrm{M}>2 \mathrm{M}_{\text {sun }}$
- With JWST or MCAO on 8-m telescopes
- IMF can be probed down to hydrogen-burning limit in MWG
- Studies in more distant galaxies in Local Group ($\sim 1 \mathrm{Mpc}$) not feasible
- Crowding limits photometric measurements

Results: 8-m

	Limiting K-magnitude			Limiting Mass				Exposure Time		
Radius $\left(\mathrm{R}_{\mathrm{e}}\right)$	LMC	M33	M82	LMC	M33	M82	LMC	M33	M82	
0.5	$\mathbf{1 6 . 3}$	$<\mathbf{1 6 . 5}$	$<\mathbf{1 9 . 8}$	$\mathbf{1 3}$	>200	>200	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1}$	<3	
1.0	$\mathbf{2 4 . 6}$	$<\mathbf{1 6 . 5}$	$<\mathbf{1 9 . 8}$	$\mathbf{0 . 2 5}$	>200	>200	$\mathbf{1 0 0 0 0}$	$\mathbf{0 . 0 1}$	<3	
2.0	$\mathbf{2 4 . 6}$	$\mathbf{1 7 . 2}$	$<\mathbf{1 9 . 8}$	$\mathbf{0 . 2 5}$	$\mathbf{1 5 0}$	>200	$\mathbf{1 0 0 0 0}$	$\mathbf{0 . 0 3}$	<3	
$\mathbf{5 . 0}$	$\mathbf{2 4 . 6}$	$\mathbf{2 1 . 5}$	$<\mathbf{1 9 . 8}$	$\mathbf{0 . 2 5}$	$\mathbf{2 0}$	$>\mathbf{2 0 0}$	$\mathbf{1 0 0 0 0}$	$\mathbf{4 0}$	$<\mathbf{3}$	

does not reach M33, M82

Resuilts: 30-m GSMT R136-like Cluster

| | Limiting K-magnitude | | Limiting Mass | | | Exposure Time | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius $\left(\mathrm{R}_{\mathrm{e}}\right)$ | LMC | M33 | M82 | LMC | M33 | M82 | LMC | M33 | M82 |
| 0.5 | >27.5 | $\mathbf{1 7}$ | $<\mathbf{1 9 . 8}$ | $\sim \mathbf{0 . 0 1}$ | $\mathbf{1 7 0}$ | >200 | $\mathbf{1 2 0 0 0}$ | $\mathbf{0 . 0}$ | $\mathbf{0 . 0 3}$ |
| 1.0 | >27.5 | $\mathbf{1 8 . 9}$ | $<\mathbf{1 9 . 8}$ | $\sim \mathbf{0 . 0 1}$ | $\mathbf{6 5}$ | >200 | $\mathbf{1 2 0 0 0}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 3}$ |
| 2.0 | >27.5 | 22.3 | 20 | $\sim \mathbf{0 . 0 1}$ | 3 | $\mathbf{1 9 3}$ | $\mathbf{1 2 0 0 0}$ | $\mathbf{1 . 5}$ | $\mathbf{0 . 0 4}$ |
| $\mathbf{5 . 0}$ | >27.5 | $\mathbf{2 7 . 5}$ | $\mathbf{2 3 . 9}$ | $\sim \mathbf{0 . 0 1}$ | $\mathbf{1 . 1}$ | $\mathbf{3 2}$ | $\mathbf{1 2 0 0 0}$ | $\mathbf{1 2 0 0 0}$ | $\mathbf{2 5}$ |

OK for the Local Group

We have also calculated spectroscopic exposure times, but they are not shown here

Results: 100-m

| | Limiting K-magnitude | | Limiting Mass | | | Exposure Time | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius $\left(\mathrm{R}_{\mathrm{e}}\right)$ | LMC | M33 | M82 | LMC | M33 | M82 | LMC | M33 | M82 |
| 0.5 | >27.5 | 15.5 | $<\mathbf{1 9 . 8}$ | $\sim \mathbf{0 . 0 1}$ | 20 | >200 | $\mathbf{1 0 0}$ | $<\mathbf{0 . 0 1}$ | $<\mathbf{0 . 0 1}$ |
| 1 | >27.5 | $\mathbf{2 6 . 5}$ | $\mathbf{1 9 . 8}$ | $\sim \mathbf{0 . 0 1}$ | $\mathbf{1 . 8}$ | $\mathbf{2 0 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 7}$ | $<\mathbf{0 . 0 1}$ |
| 2.0 | >27.5 | >33.5 | | $\sim \mathbf{0 . 0 1}$ | $\sim \mathbf{0 . 0 1}$ | | | $\mathbf{1 0 0 0 0}$ @ | |
| | | | $\mathbf{2 5 . 3}$ | | | $\mathbf{2 5}$ | $\mathbf{1 0 0}$ | K=30 | $\mathbf{2}$ |
| $\mathbf{5 . 0}$ | >27.5 | >33.5 | >36.8 | $\sim \mathbf{0 . 0 1}$ | $\sim \mathbf{0 . 0 1}$ | $\sim \mathbf{0 . 0 1}$ | $\mathbf{1 0 0}$ | | |

reaches M81 and Cen groups too

- GSMT can establish the link between emerging stellar populations and initial conditions in star-forming regions
- Fundamental to understanding star-formation process
- Essential to understanding galactic evolution
- Size matters!
- Crowding limits photometric accuracy
- Crowding limit scales as d²
- Telescope diameters of 30 m or greater are needed
- The IMF example is representative of a large class of problems that require superb image quality over ~ 1 ' FOV

2. Characterizing Extrà-Solar Planets

Goal: Characterize exo-planets

- Atmospheric structure; chemistry; rotation; "weather"
- Determine formation mechanism for EGPs

Measurements: R~10 photometry \& R ~ 200 spectra

- Near-infrared (reflected light)
- Mid-infrared (thermal emission)

Role of GSMT: Enable measurements via

- High sensitivity
- High angular resolution

KEY PÁRAMETERS: 30m GSMI

λ	$5 \lambda / \mathrm{D}$	Separation @ 10pc
1.2μ	40 mas	0.4 AU
4.7μ	160 mas	1.6 AU

Aperture is critical to enable separation of planet from stellar image. 100 m telescope => much larger sample

The Realm of 30 m Telescopes

Exosolar Planet Discovery Space

Goals

- Image planet at multiple wavelengths ($R \sim 10$)
- Classify planet from broad spectral features ($\mathrm{R} \sim 100$)
- Analyze atmospheric structure and chemistry ($\mathrm{R} \sim 1000$)
- Understand origin via (C,N,O)/H ratios
- High metal abundance suggests an agglomeration origin
- Low metal abundance suggests origin in disk instability
- Determine rotation \& weather via synoptic observations

Star suppressed by 10^{6}

$$
\mathrm{T}_{\mathrm{eq}} \sim 130 \mathrm{~K}
$$

Class I EGP: Cold Jupiter Mass Planet at 5 AU

Ammonia Ice and Water Clouds produce high reflectivity in near IR

Class II EGP: Cool Jupiter-Mass Planet at 1.5 AU

Ammonia gaseous; water clouds in troposphere, enhancing NIR reflectivity

Class III EGP: Warm Jupiter-Mass Planet at ~ 0.5 AU

Absorption by gaseous Water, Methane and Molecular Hydrogen Dominate

Near-IR Characterization,of Exo-Jupiters

$$
1.2 \mu \mathrm{~m} \quad \mathrm{R} \sim 10 \quad \mathrm{~S} / \mathrm{N}=25
$$

Object Class	Integration Time	Contrast Ratio
Class I ($\sim 5 \mathrm{AU})$ $32 \mathrm{nJy} @ 1.2 \mu \mathrm{~m}$	1.5 hours	5×10^{8}
Class II ($\sim 1.5 \mathrm{AU})$ 1nJy @ $1.2 \mu \mathrm{~m}$	1,500 hours	1.5×10^{10}
Class III ($\sim 0.5 \mathrm{AU})$ 100nJy @ $1.2 \mu \mathrm{~m}$	0.17 hours	1.5×10^{6}

NB: Calculated times assume NO contribution from parent star

Miḍ-IR Characterization off Exo-Jupiters

$$
4.7 \mu \mathrm{~m} \quad \mathrm{R} \sim 10 \quad \mathrm{~S} / \mathrm{N}=25
$$

Object Class	Integration Time GSMT R~10	Contrast Ratio	Integration Time JWST R ~ 10
Class I (~5 AU) 300nJy @ 4.7 m	3,000 hours	2×10^{7}	0.2 hrs
Class II (~1.5 AU) 1000nJy @ $4.7 \mu \mathrm{~m}$	250 hours	7×10^{6}	0.03 hrs
Class III (~0.5 AU) 30000nJy @ $4.7 \mu \mathrm{~m}$	0.3 hours	2×10^{5}	3 seconds

NB: Calculated times assume NO contribution from parent star

Earth-Sun Distance	Integration Time 30m GSMT	Contrast Ratio	Integration Time 100 m OWL
1 AU $(5 \mathrm{nJy} @ 1.2 \mu \mathrm{~m})$	61 hours	10^{10}	0.5 hours
0.4 AU $(30 \mathrm{nJy} @ 1.2 \mu \mathrm{~m})$	2 hours	2×10^{9}	0.01 hours

NB: Calculated times assume NO contribution from parent star
$4.7 \mu \mathrm{~m} \quad \mathrm{R} \sim 10 \quad \mathrm{~S} / \mathrm{N}=25$ Distance $=1 \mathrm{AU}$

Temperature	Integration Time 30 m GSMT	Contrast Ratio	Integration Time 100 m OWL
$500 \mathrm{~K}($ Warm Earth $)$ $(1.3 \mu \mathrm{Jy} \mathrm{@} 4.7 \mu \mathrm{~m})$	150 hours	5×10^{6}	1 hour
300 K $(29 \mathrm{nJy} @ 4.7 \mu \mathrm{~m})$	3×10^{5} hours	2×10^{8}	2500 hours

NB: Calculated times assume NO contribution from parent star

- A 30m GSMT can:
- Detect; classify; analyze young (t < 100 Myr) EGPs to ~ 30 pc
- Young EGPs more massive than 1 Mj can be seen to TW Hya distance
- Observations can constrain origin scenarios
- Detect \& classify old EGPs in the solar neighborhood ($\mathrm{d}<10 \mathrm{pc}$)
- Detect earth-radius planets to distances of several pc
- Star rejections $\sim 10^{9}$ needed
- Exo-earths are marginal for 30 meters, possible for 100 m

3. Gas in the Planet Formation Region o Disks:

Diagnosing Where and When Planets Form During the Accretion Phase

Joan Najita \& Steve Strom

How do Planetary Sysțems Form?

When, Where? How frequently?

Formation and evolution of planetary systems is complex...
grain coagulation
gas accretion
gap formation
orbital migration dynamical scattering Inter. with other planets
many processes affect evolution of planetary m, a, e

Theory may need help from observations!
Approach: study solar system analogues in the process of formation

To date: outer disks (e.g., millimeter, scattering; > 30 AU) very inner disks ($<0.2 \mathrm{AU}$)

Goal: planet formation region at $\mathrm{r}<10 \mathrm{AU}$

Questions \&Measurements

vinen Do Planets Form?

Measure gas dissipation timescale
(constrains giant planet formation timescale)
Look for residual gas in low continuum opacity regions (distinguishes between disk dispersal and grain growth, the first step toward giant and
terrestrial planet formation)

Where Do Planets Form?

Difficult to see young planet in the presence of a disk?
Search for dynamical signatures of planet formation, e.g., gap formation using spectral line diagnostics (location and width of gap constrains planet orbital radius and mass)

Example GSMT Program:
 When do planets form?

Measure disk gas content vs. disk radius in sources over a range in age \& environment, esp. dense cluster environment in which the solar system formed.

Infrared Diagnostics of Protoplanetary Disks

Planets Around Normal Stars

Sensitivity \& Distance: 150 pc sparse associations
(Taurus, Cha, Oph)
450 pc nearest dense cluster (Orion)
1 kpc other rich clusters

Target $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}$

Time Requirement

$30-\mathrm{m}$ GSMT
10\% emissivity
CTTS @ 1 kpc
$10 \mu \mathrm{~m} 9 \mathrm{mJy}$ $20 \mu \mathrm{~m} 16 \mathrm{mJy}$
$\mathrm{H}_{2} \mathrm{O} @ 10 \mu \mathrm{~m} \mathrm{~s} / \mathrm{n}=25 \mathrm{in} 5 \mathrm{hr}$ H_{2} @ $20 \mu \mathrm{~m} \quad 20 \quad 7 \mathrm{hr}$

$15 \mathrm{hr} /$ target for 2 settings with calibration and overhead

For 30 targets / cluster with a spread in age 5 clusters
$=250$ nights

Example GSMT Program:

Where do planets form?

Goal: Measure M_{p} and a_{p} for a statistically significant sample of protoplanets in systems spread over a range of age and environment.

If $5-10 \%$ of stars form Jupiters,
\rightarrow Recovery of a sample of
~100 protoplanets requires
a survey of 1000 T Tauri stars
\rightarrow need to reach Orion (480 pc)

Sensitivity \& Distance: 150 pc sparse associations (Taurus, Cha, Oph)
450 pc nearest dense cluster (Orion)
1 kpc other rich clusters

Forming Jupiter mass planet at 1AU opens gap 0.3 AU wide.

S/N ~ 300 needed to search for dynamical signature of protoplanet

- Time Fecicuirementit.

30-m GSMT
10\% emissivity

CTTS at 450 pc (Orion)

$4.7 \mu \mathrm{~m} \mathrm{CO} \mathrm{s} / \mathrm{n}=300$ in 15 min
$45 \mathrm{~min} /$ target with overhead and calibration.
$\rightarrow 1000$ targets in 100 nights
$10 \mu \mathrm{~m} \mathrm{H}_{2} \mathrm{O} \mathrm{s} / \mathrm{n}=100$ in 4 hr $4.5 \mathrm{hr} /$ target with overhead and calibration
$\rightarrow 1000$ targets in 500 nights

One exciting example: Search for exo-biospheres: Solar system @ 10 parsecs (Gilmozzi et al 2002)

OWL 100 m J Band 80\% Strehil $10^{4} \mathrm{sec}$ 0.4^{4} seeing

O11

Jupiter

Earth

