The Birth and Assembly of Galaxies: the Case for a 30-meter Ground-based Telescope

Betsy Barton

with: Matthew Colless Alan Dressler

Grateful acknowledgements to:

J.-D. Smith, Casey Papovich, Romeel Davé, Bev Oke, Brad Whitmore, Rob Kennicutt, Marcia Rieke, Jean-Pierre Veran, Laurent Jolissaint

Galaxy formation and evolution

How did galaxies like the Milky Way form?

M31

Learning histories of local galaxies from their stars

Using the early universe to "see" it happening

- Where and when did the first stars form?
- When and how did the build-up of galaxies occur?
- What determines the size and structure of a galaxy?
- "Nature" vs. "nurture":
 - What role does environment play?
 - What roles do dark matter and dark energy play?

The Current landscape

 HUDDIE Deep Field Details
 HSI • VV

 PRC96-01b • ST Scl OPO • January 15, 1996 • R. Williams (ST Scl), NASA

 Powerful combination of:

- Hubble Space Telescope
- 2-10-meter ground-based telescopes
- Very Large Array
- Chandra satellite
- Ground-based submillimeter facilities
- The Space Infrared Telescope Facility...

The Current landscape

When these facilities have been fully exploited, we will know about:

- The composition of the Milky Way and its closest companions
- The broad star formation histories and properties of local galaxies and large-scale structure (LSS)
- The basic properties of typical galaxies and LSS as far back as 7 billion years (to z=1-1.5)
- The basic properties of the most luminous galaxies 12 billion years ago (z=2-5)
- The existence of some galaxies 12.5-14 billion years ago (z=6-8 or 10)
- Possibly the equation of state of the universe

The requirements for progress

The relationship between the IGM and galaxy evolution: the tomography of the IGM

Surveys of absorption lines in background sources

 Measuring morphologies and the merger rate as a function of time to z=6:

 Evolution of different morphological types; identification of most strongly evolving populations at different redshifts

The star formation and chemical enrichment histories of galaxies as a function of time:

- Star formation histories of typical galaxies to z=6
- Chemical enrichment as a function of position in the galaxy

The requirements for progress

- The intrinsic properties, ultimately the masses, of galaxies at high redshift
 - Mass measures from internal dynamics as far as z=5
- Detecting the first luminous objects in the universe
 Sizes, luminosity function, IMF, enrichment

What are the true "paradigm" shifts allowed by a 30-meter telescope?

Some projects represent qualitative difference

Examples:

- IGM tomography from abundant sources
- Spectroscopy of far sub-L* galaxies at z=3-5
- Internal properties of galaxies at z=3-5
- Characterization of stars with multiple emission lines and high-resolution spectroscopy at z > 6

Galaxy surveys

Galaxy evolution and large-scale structure:

- 5°x5° survey at 2.5<z<3.5 gives a volume 600Mpc
 x 600Mpc x 900 Mpc=3x10⁸ Mpc³
- to R=26.5, 10 arcmin⁻²

1 million galaxies, ~ 15 arcmin FOV, with multiplex
 ~ 2000 in about 100 nights

IGM tomography:

- 10⁴ background sources 25 deg² corresponds to LBGs at R≈24
- high-S/N spectra require whole-night integrations
- FOV ~ 15 arcmin with mulitplex ~ 20, requires 400 nights

Galaxy evolution down the luminosity function

PHOTOMETRIC REDSHIFT

Background sources for IGM probes

At R=24 Lyman break galaxies become extremely abundant

Detailed internal properties of highredshift galaxies

Science goals:

- Dynamical masses
- Enrichment and star formation history as a function of position
- Direct observations of the build-up of mass through merging

(z=3 galaxy from Hubble Deep Field; HST psf ~ 0.1" ~ 770 pc)

Hints of internal structure at high redshift

Near-IR case: for chemical abundances, star formation histories

Plot from Oke & Barton (2000)

Line sensitivity as a function of z in H α and [OII]

- At z < 1.5, [OII] in optical and Hα in NIR are comparable even with no dust; no metallicity effects in using Hα star formation rate
- Beyond z=1.5, both lines perform well in NIR; for z=2-3, Hα is best

Globular cluster forming in 1 dynamical timescale

Sensitivity to unresolved emission lines, R=3000, T=10,000 sec, "optimistic" AO

The potential to detect lines from star forming regions

H

K

The Antennae: a lumpy local starburst

J

10⁵ sec with 30m telescope, good AO, small pixels R=3000

(image of Antennae courtesy of B. Whitmore)

The potential to detect lines from star forming regions

(image of Antennae courtesy of B. Whitmore)

Kinematics of Lyman break galaxies

At R < 25, ~3-4 LBGs per square arcminute at 2.5 < z < 3.5; ~1 at z > 3.5 8-hour exposures, multiplex ~ 40 objects with GLAO, FOV~10'x10' yields 1,000 galaxies in 25 nights MCAO for ~240 objects (16 per 2'x2' field) with $\sim 100 \text{ pc}$ resolution with 24hour exposures in another 45 nights

The potential to detect lines from normal star forming regions

 Hα image of 30 Dor in the LMC: a local starforming region

(Kennicutt et al. 1995)

The potential to detect lines from star forming regions

 30 Dor in [OII](3727)
 10⁵ sec., R=3000, excellent image quality

Emission lines: "Typical galaxies" at z=1.5 in Hα

Detecting the first objects in the universe

 At z=6-10, Lyα is at 0.85 < λ < 1.4 μm: regime where a 30meter is much more sensitive than JWST

Sensitivity to unresolved emission lines, R=3000, t=10,000 seconds

Clues from hydrodynamic simulations

Hydrodynamic simulations of Davé, Katz, & Weinberg

- Lyα cooling radiation (green)
- Light in Lyα from forming stars (red, yellow)

z=10

z=8

z=6

Ly α from Stars forming at z=10

Simulation

As observed through 30-meter telescope R=3000, 8 hours

(Many thanks to R. Davé, J.-D. Smith)

Physical elements of star formation beyond reionization

Weighing z=10 stars

Simulation through 30m telescope, 8 hours, R=3000

Summary of major shifts

Probing the IGM with high spatial frequency

Building galaxies

- Rotation curves of galaxies at z=1-1.5 that are as good as local samples now
- Kinematics of Lyman break galaxies
- Understanding sub-L* galaxies at z=2-5

Exploring the extremely high-redshift universe

- z=6-10 objects may be discovered with 8-m-class telescopes or JWST, but no detailed properties available
 - IMF
 - IGM from the Ly α line profile beyond reionization

What is beyond a 30-meter telescope?

 Older or lower-surface-brightness stars and star formation at z > 2; dwarf galaxies at z > 2

 Faint emission lines and absorption lines at z > 5-6; lines in the mid-IR

- More detailed metal abundances
- Rest-frame optical lines in "first-light" objects

The potential to detect lines from star forming regions

The Antennae: a luminous, lumpy local starburst

(image of Antennae courtesy of B. Whitmore)

Scalings: Magnitude Limits

SENSITIVITIES							
Sensitivity (Fixed S/N, fixed exposure time, different source)			Sensitivity over 8-meter (Fixed S/N, fixed exposure time, fainter source)				
	Object Noise	Sky Noise	Object Noise	Sky Noise			
Light Bucket (fixed seeing)	F ~ D ⁻²	F ~ D ⁻¹	20m: 2 magnitudes 30m: 2.9 magnitudes	20m: 1 magnitude 30m: 1.44 magnitudes			
Diffraction Limited	F ~ D ⁻²	F ~ D ⁻²	20m: 2 magnitudes 30m: 2.9 magnitudes	20m: 2 magnitudes 30m: 2.9 magnitudes			

Scalings: Exposure Times

EXPOSURE TIMES

Exposure time scalings (Fixed S/N, fixed source flux)			Time savings over 8-meter (Fixed S/N, fixed source flux, shorter exposure)	
	Object Noise	Sky Noise	Object Noise	Sky Noise
Light Bucket (fixed seeing)	t ~ D ⁻²	t ~ D ⁻²	20m: factor of 6.25 30m: factor of 14.1	20m: factor of 6.25 30m: factor of 14.1
Diffraction Limited	t ~ D ⁻²	t ~ D ⁻⁴	20m: factor of 6.25 30m: factor of 14.1	20m: factor of 39.1 30m: factor of 198

Not just a matter of patience! Many studies require large samples of objects.