Frontier Science Enabled by a Giant Segmented Mirror Telescope

Rolf-Peter Kudritzki ${ }^{1}$ for the GSMT Science Working Group
${ }^{1}$ Chair, GSMT Science Working Group
Institute for Astronomy, University of Hawaii

Status of optical/IR ground-based astronomy: 8 m - to 10 m -telescopes with AO

Giant Segmented Mirror Telescope

- Top priority of NAS/NRC 2001 decadal survey
- 30m segmented primary mirror
- 10x gain in light gathering power (sensitivity)
- Diffraction limited, Adaptive Optics (AO),
- 3x gain in angular resolution (image sharpness)
- Projected costs $\sim \mathbf{\$ 7 0 0}$ M
- Private/public/international partnership recommended for funding

Two incarnations of the GSMT

- TMT - 30m segmented mirror (\approx Keck) UC, Caltech, AURA, ACURA
- GMT - 20 m consisting of seven 8.2 m segments spatial resolution $\approx 25 \mathrm{~m}$

Carnegie, Harvard, Arizona, MIT,
Michigan

TMT: A partnership of CD

GSMT Science Working Group

Formed July, 2002, by NOAO on request by the NSF

- Identify forefront astrophysical science likely to emerge over next decade
- Science potentially enabled by GSMT
- Design options that can achieve science
- Technologies to be advanced or developed
- Inform the NSF about investments needed
- Become communities advocate in private/public partnerships
- Establish working relationships with groups in Australia, Canada, Europe, Japan, Mexico

GSMT SWG Members

Chair: Rolf-Peter Kudritzki, UH IfA
Vice-Chair: Steve Strom, NOAO

SWG Members:

- Jill Bechtold -- UA
- Mike Bolte -- UCSC
- Ray Carlberg -- U Toronto
- Matthew Colless -- ANU
- Irena Cruz-Gonzales -- UNAM
- Alan Dressler -- OCIW
- Betsy Barton -- UA
- Terry Herter -- Cornell
- Mansanori Iye -- NOAJ
- Paul Ho -- CfA
- Jonathan Lunine -- UA LPL
- Claire Max -- UCSC
- Chris McKee -- UCB
- Francois Rigaut -- Gemini
- Doug Simons -- Gemini
- Chuck Steidel -- Caltech
- Kim Venn -- Macalester
http://www.aura-nio.noao.edu/gsmt_swg/

SWG activity

- Five meetings (plus telecons), July 2002 through February 2004
- Identification of most important science themes for the next decades (input from SWG members, decadal survey, "Connecting Quarks to Cosmos")
- Reports from AO and instrumentation experts
- Presentations by four principal telescope design groups: University of Hawaii, Magellan 20 (Carnegie, Harvard, Arizona, Michigan, MIT), LAT (Cornell, Illinois, Chicago, Northwestern), CELT (Caltech, UC)
- First report published on June 30, 2003
- All activity documented under
http://www.aura-nio.noao.edu/gsmt_swg

SWG activity

- two meetings with NSF and presentations of report - presentation of report to CAA of Academy of Sciences
- information session at Seattle AAS meeting 2003
- participation at NOAJ ELT meeting, Tokyo, Jan. 2004
- meeting with ESO SWG, Berlin, May 2004
- contact with JWST SWG
- special session at San Diego AAS meeting Jan. 2005
- all activity documented under
http://www.aura-nio.noao.edu/gsmt_swg
" $21^{\text {st }}$ century astronomy is uniquely positioned to study the evolution of the universe in order to relate causally the physical conditions of the

Big Bang Big Bang

Recombination

Large Scale Structure in Gas
to the development of RNA and DNA"
Riccardo Giacconi Nobel Prize, 2002

First Galaxies

First Stars

Planet Formation

Mature Planetary Systems

Life and its Precursors

Connecting the First Nanoseconds to the Origin of Life

Connecting the First Nanoseconds to the Origin of Life

Science Enabled by GSMT

- 3-D map of galaxies and IGM over $2.5<\mathrm{z}<4.5$
- Redshift survey of 10^{6} galaxies in $3 \times 10^{8} \mathrm{Mpc}^{3}$ co-moving volume
- High resolution spectra of IGM absorption spectra
- Determine 3-dimensional distribution of gas and galaxies
- Track evolution of metal abundance \& relate to galactic activity
- Star formation at $\mathrm{z}>7$
- Deep near-IR imaging with MCAO
- Detect Lyman break galaxies or Ly- α emitters
- Follow up spectroscopy to disentangle physical properties
- Observing the galaxy assembly process
- Integral field unit spectra of pre-galactic fragments at $2.5<\mathrm{z}<4.5$
- MCAO imaging and spectroscopy of nearby galaxies
- Determine age and stellar kinematics; measure mass directly
- Quantify star formation activity and chemical composition
- Disentangle populations; age and distribution of chemical composition of merger remnants distributed in nearby galaxy halos

Science Enabled by GSMT

- Understanding where and when planets form
- Ultra-high resolution mid-IR spectra of ~ 1000 accreting PMS stars
- Physics of proto-planetary disks
- Infer planetary architectures via observation of "gaps" in disks
- Detecting and characterizing mature planets
- Extreme AO coronography; spectroscopy of giant extra-solar planets out to 70 pc
- Physical properties of planets, chemical composition

Evolution of the universe - theoretical scenario

Numerical simulation (L. Hernquist) showing the cosmic web of intergalactic gas and dense proto-galactic clumps

Predicted cosmic web

of intergalactic gas and galaxies at $\mathrm{z}=3.5$

Intergalactic gas

High density clumps concentrated by dark matter \rightarrow galaxies

Structure depends strongly on nature of dark matter dark energy

We need to observe 3D-structure of cosmic web at $\mathrm{z}=3.5$

GSMT will have the power to reveal the 3D-structure and physics of the cosmic web!!

Tomography of the universe at 12 billion lyr

 Survey $5^{\circ} \times 5^{\circ} \sim 600 \mathrm{Mpc} \times 600 \mathrm{Mpc} \times 900 \mathrm{Mpc} @ 2.5<\mathrm{z}<4.5$ 10^{6} galaxies down to $m_{R}=26.5$
low resolution spectra \rightarrow redshifts, 3D-distribution, distribution of dark matter
10^{4} galaxies down to $\mathrm{m}_{\mathrm{R}}=24.0$ as background sources to probe intergalactic gas high resolution spectra \rightarrow 3D-distribution and chemical composition of gas

Only GSMT can take spectra of these faint objects !!!

Sensitivity is vital for a survey down the luminosity function

- $\mathbf{S} / \mathbf{N}=3$ limits
- $\mathrm{t}_{\mathrm{exp}}=10^{4} \mathrm{~s}$
- $\mathbf{F W H M}=0.5$ "

Major advantages with some GLAO

 correction over the wide field (in the optical)

- $\mathbf{S} / \mathbf{N}=3$ limits
- $\mathrm{t}_{\mathrm{exp}}=10^{4} \mathrm{~s}$
- $\mathbf{F W H M}=0.3 "$

The power of GSMT

R=24 Quasar @ z =3 Exp time = 8 hr

Intrinsic spectrum of faint quasar with "forest" of intergalactic gas absorption lines

All night exposure with 8m-telescope
 All night exposure with GSMT

(J. Bechthold)

Tomography of universe at $2.5<\mathrm{z}<4.5$

- Goals:
- Survey $5^{\circ} \times 5^{\circ} \sim 600 \mathrm{Mpc} \times 600 \mathrm{Mpc} \times 900 \mathrm{Mpc} @ \mathrm{z} \sim 3.5$
- Link emerging distribution of IGM/ galaxies to CMB and distribution of dark matter
- Determine metal abundances of IGM/galaxies
- Measurements:
- Spectra for 10^{6} galaxies ($\mathrm{R} \sim 2000, \mathrm{~S} / \mathrm{N} \sim 5$), $\mathrm{m}_{\mathrm{R}} \leq 26.5$
- Spectra of 10^{4} galaxies/QSOs ($R \sim 20000, S / N \sim 30$), $m_{R} \leq 24$
- Key requirements:
- 15-20' FOV;MOS ~ 2000/20 multiplex (low/high res)
- Time to complete study with GSMT: 500 nights

Goal: test/constrain hierarchical assembly theory
intrinsic properties of primeval galaxies
how did they transform to the galaxies today?
Problem: the typical primeval galaxies are very faint \rightarrow GSMT !!!

A galaxy survey at $\mathrm{z}=3.5$

Survey $5^{\circ} \times 5^{\circ} \sim 600 \mathrm{Mpc} \times 600 \mathrm{Mpc} \times 900 \mathrm{Mpc} @ 2.5<\mathrm{z}<4.5$

10^{6} galaxies down to $\mathrm{m}_{\mathrm{R}}=26.5$
low resolution spectra $\rightarrow \mathrm{z}$, star formation rate
10^{5} galaxies down to $\mathrm{m}_{\mathrm{R}}=25.5$
low resolution spectra with high signal \rightarrow chemical composition, initial mass function
10^{3} galaxies down to $\mathrm{m}_{\mathrm{R}}=\mathbf{2 5 . 0}$
High resolution spectra + MCAO
\rightarrow internal galaxy kinematics on scales of 100pc
\rightarrow masses, merging dynamics etc.
Only GSMT can take spectra of these faint objects !!!

Analyzing Individual Galaxies out to $\mathrm{z} \sim 3$

- Determine the gas and stellar dynamics within individual galaxies
- Quantify variations in star formation rate
- Tool: IFU spectra
[R ~ 5,000 - 10,000]

GSMT 3 hour, 3σ limit at $R=5,000$ 0.1 "x0.1" IFU pixel (sub-kpc scale structures)

J	H	K
26.5	25.5	24.0

Hubble Deep Field South
HST • WFPC2

Formation of giant galaxies

Hydro-simulation (C. Mihos, L. Hernquist)
"Antennae" galaxy - two galaxies merging (HST, B. Whitmore)

GSMT vs JWST

Simulated monochromatic images of the 'Antennae' (local starburst galaxy: 10^{5} seconds integration time) Courtesy: E. Barton-Gillespie

Galaxy Kinematics with GSMT

H α in typical spiral galaxy: $10^{5} \mathrm{sec}$ exposure

$z=0.01$

$z=1.5$
$8 m$

$3^{\prime \prime}$
$z=1.5$ 30m

Intrinsic UV Spectra

Rest-frame UV, 6 hours, $R=6000, \mathrm{~m}_{0.64 \mu \mathrm{~m}, \mathrm{AB}}=24.5$

Rest-frame optical

Rest-frame [OIII](5007) line, $m_{2.2 \mu, A B}=23$

8m
30m

The Survey at $2.5 \leq \mathrm{z} \leq 4.5$

- 10^{6} galaxies in $5^{\circ} \times 5^{\circ}$ area down to $\mathrm{m}_{\mathrm{R}}=26.5$

MOS (1000) spectroscopy ($\mathrm{R} \sim 2000$), $\mathrm{t}_{\mathrm{exp}} \sim 2 \mathrm{~h}$
\rightarrow z, SFR

- 10^{5} galaxies down to $\mathrm{m}_{\mathrm{R}}=25.5, \quad\left(10^{3}\right.$ in $\left.15^{\prime} \times 15^{\prime}\right)$

MOS (1000) spectroscopy ($\mathrm{R} \sim 2000$), $\mathrm{t}_{\text {exp }} \sim 4 \mathrm{~h}$
\rightarrow (S/N) ~ 20, metallicities, IMF

- 10^{3} galaxies down to $\mathrm{m}_{\mathrm{R}}=25.0 \quad\left(100\right.$ in $\left.10^{\prime} \times 10^{\prime}\right)$
\rightarrow internal kinematics with resolution $\leq 1 \mathrm{kpc}$ some 250 galaxies with $\leq 100 \mathrm{pc}$ (MCAO)
requires 150 nights in addition to large scale structure survey

Spectral diagnostics of high-z starbursts

Starburst models - observed spectra vs. model atmospheres

Rix, Pettini, Leitherer,
Bresolin, Kudritzki, Steidel 2004, ApJ, to be subm.

Spectral diagnostics of high-z starbursts

Starburst models - fully synthetic spectra based on model atmospheres

Rix, Pettini, Leitherer, Bresolin, Kudritzki, Steidel, 2004, ApJ, submitted

Spectral diagnostics of high-z starbursts

cB58@ $@=2.7$
fully synthetic spectra vs. observation

Rix, Pettini, Leitherer, Bresolin, Kudritzki, Steidel 2004, ApJ, submitted

The first stars in the universe - clues from hydrodynamic simulations

- Hydrodynamic simulations by Davé, Katz, \& Weinberg
- Ly- α cooling radiation (green)
- Light in Ly- α from forming stars (red, yellow)

$$
z=10 \quad z=8 \quad z=6
$$

Stars forming at $\mathbf{z}=10$!

1 Mpc (comoving)

Simulation
As observed through 30-meter telescope $\mathrm{R}=3000,10^{5}$ seconds, Barton et al., 2004, ApJ 604, L1

stars at $\mathrm{z}=6$ or 8

30-m

30-m

A possible IMF diagnostic at $\mathrm{z}=10$

Hell ($\lambda 1640 \AA$) Standard I MF

Hell ($\lambda 1640 \AA$)
Top-Heavy I MF, zero metallicity

(IMF + stellar model fluxes from Bromm, Kudritzki, \& Loeb 2001, ApJ 552,464)

Star formation at $\mathrm{z} \geq 7$

- area of $2^{\prime} \times 2^{\prime} \sim(5 \mathrm{Mpc})^{3}$ at $\mathrm{z}=10$
\rightarrow simulations predict several tens of objects detectable with GSMT
- $2^{\prime} \times 5^{\prime} \mathrm{FoV} \rightarrow$ fair sampling of very early universe with up to 400 pointings
- imaging (MCAO, GLAO) and
- follow-up spectroscopy ($\mathrm{R} \sim 3000$, multiplex 100-600)
- Morphological studies on scales < $\mathbf{1 0 0}$ pc with AO
$\rightarrow \quad 100$ nights with GSMT

Connecting the Distant \& Local Universe

Mature
Galaxies

Galaxy-building Mergers

Intergalactic Gas \&
Pre-galactic Clumps

Microwave Background

Formation of giant galaxies

Hydro-simulation
"Antennae" galaxy - two galaxies merging

The halos of Milky Way-like galaxies

Simulation depicting streams of dynamically and chemically distinct stars (color coded)

Remnants of multiple past merger events

Spectroscopy with GSMT will provide complete genealogical record and nucleosynthesis history together with dynamics
(P. Harding)

The different stellar populations in galaxies

- Goals:
- Quantify ages; $[\mathrm{Fe} / \mathrm{H}],[\alpha / \mathrm{H}],[\mathrm{s}, \mathrm{r} / \mathrm{H}]$, ; for stars in nearby galaxies spanning all types
- Use 'archaelogical record' to understand the assembly process
- Quantify IMF in different environments
- Measurements:
- CMDs for selected areas in local group galaxies
- Spectroscopy ($\mathrm{R} \sim 1500 \rightarrow$ kinematics, $\sim 40000 \rightarrow$ nucleosynthesis)
- Key requirements:
- MCAO delivering 2' FOV; MCAO-fed NIR spectrograph
- Time to complete study with GSMT: 150 nights

M32

Gemini North
Hokupa'a AO (IfA)
same region
JWST
simulation
same region
GSMT
simulation
K. Olson, F. Rigaut, B. Ellerblok

Stellar Populations in Galaxies

M 32 (Gemini/Hokupaa)

GSMT with MCAO

JWST

Population: $10 \% 1 \mathrm{Gyr},[\mathrm{Fe} / \mathrm{H}]=0 ; 45 \% 5 \mathrm{Gyr},[\mathrm{Fe} / \mathrm{H}]=0 ; 45 \% 10 \mathrm{Gyr},[\mathrm{Fe} / \mathrm{H}]=-0.3$ Simulations from K. Olsen and F. Rigaut

Crowding Limits Photometric Accuracy

Crowding introduces photometric error through luminosity fluctuations within a single resolution element of the telescope due to the unresolved stellar sources in that element.

Crowding Limits for GSMT

Limiting luminosity scales as \mathbf{D}^{-2}

Modeling Population Mixes

- 45 model isochrones with ages from 0.5-13 Gyr and $[\mathrm{Fe} / \mathrm{H}]=0.0,-0.3,-0.6$ compared with data
- Maximum likelihood method of Dolphin (1997)

Recovering Population Mixes

Input Simulation

30 m GSMT

3\% $1 \mathrm{Gyr} /[\mathrm{Fe} / \mathrm{H}]=\mathbf{0 . 0}$

62\% $10 \mathrm{Gyr} /[\mathrm{Fe} / \mathrm{H}]=-\mathbf{0 . 3}$
$\mathbf{2 \%} \mathbf{1 ~ G y r} /[\mathrm{Fe} / \mathrm{H}]=\mathbf{0 . 0}$
$\mathbf{3 4 \%} \mathbf{5 \mathrm { Gyr } / [\mathrm { Fe } / \mathrm { H }] = \mathbf { 0 . 0 } 0}$
64\% 10+/-1 Gyr/[Fe/H]=-0.3

Assumptions for MCAO simulations

	J	K
FWHM	0.009	0.015 arcsec
Strehl	0.2	0.6

PSF includes effects of

- limited number of actuators in deformable mirrors
- optical effects of the primary mirror segments (tilt, de-phasing)
- limited temporal sampling of wave fronts
- limited spatial resolution of wave front sensors
no PSF variations with time and position included

The different stellar populations in galaxies

- Goals:
- Quantify ages; $[\mathrm{Fe} / \mathrm{H}],[\alpha / \mathrm{H}],[\mathrm{s}, \mathrm{r} / \mathrm{H}]$, ; for stars in nearby galaxies spanning all types
- Use 'archaelogical record' to understand the assembly process
- Quantify IMF in different environments
- Measurements:
- CMDs for selected areas in local group galaxies
- Spectroscopy (R ~ $1500 \rightarrow$ kinematics, $\sim 40000 \rightarrow$ nucleosynthesis)
- Key requirements:
- MCAO delivering 2' FOV; MCAO-fed NIR spectrograph
- Time to complete study with GSMT: 150 nights

NGC 3621

NGC 3621

NGC 3621 vs Galaxy

NGC 3621

7Mpc

Bresolin, Kudritzki,

 Mendez, Przybilla, 2001, ApJ Letters, 548, L159

Kgc 300

NGC 300 WN11 star

non-LTE line-blanketed

stellar parameters wind parameters

H, He, CNO, AI, Si, Fe abundances

Velocity $\left(\mathrm{km} \mathrm{s}^{-1}\right)$

Bresolin, Kudritzki, Najarro et al. 2002

NGC 300 WN11 star

Species	Relative number fraction	Mass fraction	X / X_{\odot}
H	$1.5 \mathrm{E}+00$	$2.7 \mathrm{E}-01$	0.4
He	$1.0 \mathrm{E}+00$	$7.2 \mathrm{E}-01$	2.7
C	$3.6 \mathrm{E}-04$	$7.7 \mathrm{E}-04$	0.3
N	$2.5 \mathrm{E}-03$	$6.3 \mathrm{E}-03$	7.7
O	$5.5 \mathrm{E}-04$	$\mathbf{\alpha} /$ Fe ratio	
Al	$5.0 \mathrm{E}-06$	$2.4 \mathrm{E}-03$	0.2
A	0.4		
Si	$8.5 \mathrm{E}-05$	$1.7 \mathrm{E}-04$	0.2
Fe	$1.5 \mathrm{E}-04$	$1.5 \mathrm{E}-03$	1.3

$$
\begin{aligned}
& ++ \\
& + \\
& \begin{array}{l}
+ \\
+
\end{array} \\
& ++ \\
& + \\
& \begin{array}{l}
+ \\
+
\end{array} \\
& + \\
& + \\
& + \\
& +
\end{aligned}
$$

Deep spectroscopy of Planetary Nebulae in Virgo early-type galaxy NGC 4697

Exploring other solar systems

More than 100 planets around other stars detected so far ("indirect" techniquevery small periodic spectral line shifts indicate orbital motion)

Most planetary systems vastly different from Solar System

No direct images of other planetary systems
 so far

Artist conception of planetary system orbiting around 55 Cancri using results of radial velocity Keck observations

Planets around other stars

"Brown Dwarf"
orbiting a star at same distance as Saturn from sun

Gemini/Keck AO detection by Michael Liu (IfA), 2002

Problem: Planets much fainter than Brown Dwarfs
$\rightarrow 30 \mathrm{~m}$ telescope needed !!
\rightarrow GSMT !!

The power of GSMT

GSMT will allow
for the first time

- To image giant planets surrounding many hundred stars out to distances as great as 200 light years (coronography + AO)
- To determine masses and radii by imaging and spectroscopy
- To analyze their atmospheric structure and chemical composition by spectroscopy

Exploring other solar systems

Artist conception of planetary system orbiting around 55 Cancri using results of radial velocity Keck observations

55 Cancri - physical characterization by

spectroscopy

GSMT \rightarrow

Detection of $55 \mathrm{CnC} \mathrm{b} / \mathbf{c}$ Chemical composition of Atmosphere of 55 CnC b

Sudarsky, Burrows
\& Hubeny, 2003

Key Parameters: 30m GSMT

$\boldsymbol{\lambda}$	$\mathbf{5} \boldsymbol{\lambda} / \mathbf{D}$	Separation @ 10pc
1.2μ	40 mas	0.4 AU
4.7μ	160 mas	1.6 AU

Aperture is critical to enable separation of planet from stellar image and to characterize planet by spectroscopy

GSMT discovery space

Exosolar Planet Discovery Space

The physics of giant exo-planets

Goal: Image and characterize exo-planets

- Mass, radius, albedo
- Atmospheric structure
- Chemistry \rightarrow physics of giant planet formation \rightarrow repercussion for formation of terrestrial planets, life on terrestrial planets
- Rotation
- "Weather"

Measurements: R~10 photometry \& R ~ 200 spectra

- Near-infrared (reflected light)
- Mid-infrared (thermal emission)

Role of GSMT: Enable measurements via

- High sensitivity
- High angular resolution

Exploring the process of planet formation

Artist conception of a proto-planetary disk with young planets and asteroids

Proto-planetary disks around stars

β Pic (ESO VLT)

University of Hawaii, Institute for Astronomy
GG Tau, Gemini (Hokupaa) Potter et al., 2002

Proto-planetary disks around stars

HST, NICMOS

Formation of planets in proto-planetary disks

Goals:

- AO imaging and IR spectroscopy of thousands of disks around nearby young stars
- characterize physics of disks,
 $T(r), \rho(r)$
- detect giant planets directly
- detect giant planets indirectly from gravitational "gaps" in disks
- characterize planets from properties of disks (location, widths)

Probing Planet Formation with High Resolution Infrared Spectroscopy

Simulated 8 hr exposure of mid-IR CO fundamental spectral line profile emitted by gas in gap produced by giant planet
width of line \rightarrow location in disk Width of line peaks \rightarrow width of gap
\rightarrow mass of planets

Infrared Diagnostics of Protoplanetary Disks

Planets Around Normal Stars

Origins of Planetary Systems

- Goals:
- Understand where and when planets form
- Physical nature of proto-planetary disks (T(r), $\rho(\mathbf{r}), \Sigma(\mathbf{r})$)
- Observation of 'gaps' to constrain formation and physics of giant planets
- Measurements:
- Spectra of some 10^{3} accreting PMS stars (R~105; $\lambda \sim 5 \mu$) in SF regions
- Key requirements:
- On axis, high Strehl AO; low emissivity
- Exploit near-diffraction-limited mid-IR performance
- Time to complete study with GSMT:
- 1 year

Conclusions: Science

- Fundamental science
\rightarrow connection first structures of Big Bang to origins of life
\rightarrow 3D-structure and chemical evolution of early universe
\rightarrow physics of formation of first stars and galaxies and evolution to mature galaxies of today
\rightarrow nature of dark matter, dark energy
\rightarrow physics of thousands of proto-planetary disks and planet formation
\rightarrow physical characterization of hundreds of extra-solar planetary system
\rightarrow formation of terrestrial planets and habitable zones

Conclusions: Telescope

- Unprecedented light gathering power and angular
resolution
\rightarrow completely new detections space
\rightarrow unanticipated phenomena
- Extensive analysis by several groups
\rightarrow costs $\sim \$ 700 \mathrm{M}$
- Formidable technical challenge but no "show stoppers"

SWG recommendation

- Immediate NSF investment in support of a technology program to develop a viable, cost-effective GSMT concept within next four years (echoing decadal survey)
- Proposals should show
\rightarrow evidence of value of proposed investment to multiple GSMT-type programs
\rightarrow proactive commitment to share results among programs
- Coherent supervision and coordination needed
- Investment should result in public access to telescope time

Technology Development for ELTs

Four key areas require technology development to achieve required performance:

- Telescope systems
- Facility Adaptive Optics systems
- Site Evaluation
- Science instruments

Future work of the SWG

- Feedback from community concerning key science
- Develop community-based view of performance goals and requirements for GSMT
- Review scientific instrument concepts
- Monitor progress of technology development
- Scientific feedback to GSMT designing groups
- Establish working relationships with groups abroad
- Work closely with JWST SWG
- Continue reporting to NSF, AAAC, CAA
- Ensure input from U.S. research community

