DRM & DRSP Workshop 26 - 28 May 2009 ESO Garching

Imaging & spectroscopy of embedded dense massive clusters in our Galaxy

Hans Zinnecker (Astrophysical Institute Potsdam, Germany)

with: F. Comeron (ESO)

M.J. McCaughrean (Exeter)

Scientific Requirements for Extremely Large Telescopes Proceedings IAU Symposium No. 232, 2005 P. Whitelock, M. Dennefeld & B. Leibundgut, eds.

 \odot 2006 International Astronomical Union doi:10.1017/S1743921306000858

ELT near-infrared and thermal-infrared studies of massive star formation: direct imaging and integral field spectroscopy of ultracompact HII regions

Hans Zinnecker

Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany email: hzinnecker@aip.de

Abstract. In this contribution, we show how a future ELT (>25 m diameter) helps to understand the formation and early dynamical evolution of massive stars embedded in dustenshrouded very compact HII regions. We describe how to exploit the ELT's near- and mid-IR enhanced sensitivity and high angular resolution to peer through huge amounts of dust extinction, taking direct nearly diffraction-limited images and doing IFU spectroscopy. Together with ALMA, an ELT will be a powerful observing platform to reveal one of the most hidden secrets of stellar astrophysics: the origin of massive stars.

Abstract

We discuss the progress that can be expected from infrared imaging and IFU spectroscopic studies with the 42m E-ELT of the very obscured birthplaces of massive stars in Galactic molecular cloud clumps and ultracompact HII regions. The E-ELT in the K-band can penetrate as much as 200 mag of visual extinction. The combination of astrometric and radial velocity measurements is required to study dynamical processes associated with dense massive star cluster formation.

THE E-ELT DESIGN REFERENCE MISSION

DRM SCIENCE CASES

The following is the list of 'prominent' science cases chosen by the SWG to be studied by the DRM:

- Planets & Stars
 - S3: From giant to terrestrial exoplanets: detection, characterization and evolution (demo case)
 - S9: Circumstellar disks
 - S5: Young stellar clusters and the Initial Mass Function.
- Stars & Galaxies
 - G4: Imaging and spectroscopy of resolved stellar populations in galaxies (demo case)
 - G9: Black holes and AGN
- Galaxies & Cosmology
 - C10: The physics of high redshift galaxies (demo case)
 - C4: First light the highest redshift galaxies
 - C7: Is the low-density intergalactic medium metal enriched?
 - C2: A dynamical measurement of the expansion history of the Universe

The letter/number combinations refer to the science case designations in the SWG's first report.

http://www.eso.org/sci/facilities/eelt/science/drm/cases.html

Artist's impression of the E-ELT during observations. In the background the Center of the Milky Way is just rising above the enclosure of the telescope.

http://www.eso.org/gallery

aufile.

Arches cluster

HST infrared image F205W (*red*), F160W (*green*), and F110W (*blue*)

Figer et al. 1999

NGC 3603 VLT/ISAAC JHK FOV 3.4′ × 3.4 ′

Brandl et al. 1999

Omega Nebula (M17), distance ~2 kpc, expanding HII region, IRAC bands 234

M17 expanding young cluster, VLT/ISAAC JHK-image

completely embedded S255-IR cluster (JHK/VLT/ISAAC) FOV: 2.5 × 2.5 arcmin

Correia & Zinnecker 2008

STAR FORMATION PARADIGM

massive stars form in the centers of dense clusters see Orion-Trapezium, M17, NGC3603, Arches, etc. and R136/30Dor in LMC

QUESTION

what did these clusters look like when they were still deeply embedded in their protocluster parent cloud? Have protocluster clouds been found?

ANSWER

a new class of infrared dark clouds found in absorption in mid-infrared (MSX, Spitzer)

obs example

mass, size, column density, extinction

Implications

likely much more compact configuration before protocluster cloud is dispersed

1.3mm dust continuum observations (contours, top row) of 4 dense molecular proto-cluster regions

MSX mid infrared images of the same regions

Garay et al. 2004

observational requirements

need to penetrate 100-200 mag of visual extinction => K-band: $A_{\rm K}$ = 0.11 $A_{\rm V}$ (extinction law see later) need to resolve crowded fields (compact clusters) => diffraction limit in K-band is 10 mas for D = 42 m

need to study stellar/gas dynamics in protoclusters => astrometric precision 1 mas/yr = 20 km/s at 4 kpc corresponding RV-res R = 10⁴ => IR-IFU (AO)

3 competing models of massive star formation

- 1) monolithic collapse (as in low-mass stars)
- 2) "competitive accretion" in a protocluster
- 3) stellar collisions in very dense clusters

see Zinnecker & Yorke (2007, Ann. Rev. A&A 45, 481)

measurement goals

- a) stellar number density of massive stars to investigate if collisions are likely
- b) stellar radial velocities and proper motion to discover binary systems and runaway stars

gas dynamics (expanding HII region: 10 km/s) in combination with ALMA submm observations

typical velocity dispersion 20 km/s > c(HII) for a star cluster of $M = 10^4 M_{\odot}$ and r = 0.1 pc

- c) massive rotating circumstellar disks and massive protostellar infall (accretion rate)
- d) mass segregation: high mass stars in center is this the case from the very beginning?
- e) cloud fragmentation & core size distribution to test the different MSF model predictions

Fig. 2

Color-composite image constructed from the F110W (*blue*), F160W (*green*), and F222M (*red*) mosaics of the W3 IRS 5 region, encompassing the whole region surveyed in the NICMOS measurements. The box shows the region displayed in Fig. 3.

W3 IRS 5 with NICMOS a proto-Trapezium system

Fig. 3

F222M (2.22 μ m) and F160W (1.60 μ m) images of W3 IRS 5 and the neighboring red sources and nebulosities. In panel A we show the F222M image using a cube root scaling. In panel B we show the same image, but with the main NIR sources marked. The asterisks mark the positions of the associated radio sources D2, B, A, and K6. In panel C we show the image with the NIR 1 and NIR 2 sources subtracted. An extended nebulosity between the two sources is clearly evident. Two additional point sources partially hidden by the PSF of NIR 2 are marked. The ringlike pattern is a residual from the PSF subtraction. In panel D we show the F160W image toward this region, with the five IR sources marked.

FOV: 4×4 arcsec, $\sim 10^4 \times 10^4$ AU

Megeath, Wilson & Corbin 2005

Diffraction limit (~ λ /D) of a D=42m telescope:

at 2 micron	~10mas
at 3 micron	~15mas
at 5 micron	~25mas

astrometric precision at 2 microns: 1 mas/yr (20 km/s at 4 kpc)

sensitivity limit of a D=42m telescope

for S/N = 10 in t = 1 hour integration time
(for point sources, diffraction limited)

- K = 28 mag (see ELT exposure time calculator)
- L = 22 mag (about 7 mag deeper than 8m VLT)
- M ~ 20 mag (Paranal sky backround 1.2 mag/arcsec2)

B. Brandl (priv. commun.)

PS. note that for a given S/N, integration time ~ D^{-4} in the background noise limited case

B 68 dark cloud

credit: J. Alves, ESO

Looking Through the Dark Cloud B68 (NTT + SOFI)

ESO PR Photo 29a/99 (2 July 1999)

© European Southern Observatory

Interstellar Extinction in the Infrared

(Rieke and Lebofsky 1985, D. Lutz 1999)

$$A_{\rm J} = 0.28 A_{\rm V}$$
 $A_{\rm L} = 0.06 A_{\rm V}$
 $A_{\rm H} = 0.18 A_{\rm V}$ $A_{\rm M} = 0.02 A_{\rm V}$
 $A_{\rm K} = 0.11 A_{\rm V}$

for A_V = 200 mag (N_{H2} = 10^{23.5} cm⁻²) ie. a dense protocluster cloud clump

 $A_{J} = 56 \text{ mag} \qquad A_{L} = 12 \text{ mag}$ $A_{H} = 36 \text{ mag} \qquad A_{M} = 4 \text{ mag}$ $A_{K} = 22 \text{ mag}$

HERE IS THE KEY MESSAGE TO TAKE HOME:

a 42m ELT can penetrate $A_{K} = 22 \text{ mag} (A_{V} = 200 \text{ mag})$ of extinction in the K-band to detect nearby (4-8 kpc) deeply embedded luminous massive stars ($M_{K} = -7 \text{ mag}$) in addition, there are the hydrogen recomb. lines Br_g , Pf_g , Br_a , Hu (14-6) whose ratios have well-defined values (e.g. $Br_g/Br_a = 1/3$; $Br_g/H_\alpha = 1/100$) in optically thin ionised gas (Menzel Case B) to infer the extinction to individual objects DRM proposal: The origin of massive stars (a particular science case for the E-ELT)

- embedded dense stellar population
- embedded stellar (and gas) dynamics

the centers of massive proto-clusters

- K-, L-, M-band imaging
- K-, L-, M-band 3D IFU Spectroscopy

Fig. 1. Colour-coded image of the entire G9.62+0.19 region taken in the three broad-band NIR filters J (blue), H (green), and K_s (red). The large-scale contour lines denote the emission levels derived from the 8.28 μ m image of the related MSX source. The left-most large contour line indicates the position of the close-by Infrared Dark Cloud.

Credit: McCaughrean & Rayner

Weitzel et al. 1996 / Eckart et al. 1995 Galactic Center massive star 3D spectroscopy

Outline of the various 2003-2005 SPIFFI/SINFONI H+K- and K-band cubes, superposed on a ~100 mas resolution, L-band NACO image (logarithmic scale). Small circles denote the 90 quality 1 and 2 early-type stars (OB I-V, Ofpe/WN9, W-R stars. A dotted circle denotes a 0.5 pc (20 arcsec) radius zone centered on Sgr A*, within which essentially all OB stars we have found appear to lie (from Paumard et al. 2006).

target	RA	DEC	time (hrs)	DM	FOV	note
BN/KL	06 00	-05 00	12	8.5	10′′	Orion-IRc2 protostar
SgrA*	17 59	-29 00	24	14	40′′	Galactic Center OB cluster
W51-IRS2	19 24	+14 30	8	14	10′′	dense embedded cluster
G10.6-0.4	18 10	-19 56	8	14	10′′	dense embedded HII region
BN/KL	06 00	-05 00	12	8.5	10′′	Orion-IRc2 protostar
SgrA*	17 59	-29 00	24	14	40′′	Galactic Center OB cluster
W51-IRS2	19 24	+14 30	8	14	10′′	dense embedded cluster
G10.6-0.4	18 10	-19 56	8	14	10′′	dense embedded HII region

"3D Spectroscopy"

courtesy: M.M. Roth (AIP)

courtesy: M.M. Roth (AIP)

Principle of Operation

(courtesy J. Allington-Smith)

NGC 2070 in the LMC HST/NICMOS F160W FOV 1 x 1 arcmin

compact core: R136 4 × 4 arcsec = 1 × 1 pc SINFONI IFU target

M. Andersen PhD 2005

Cluster/ID	Multiplicity	Sp. Types	P (daye)	M2/M4
	wullphicity	Sp. Types	r (uays)	
NGC 6231				
CPD-41°7742	ESB2	O9V+O9.5V	2.44	0.56
HD 1522 19	ESB2	O9III+B1-2V/III	4.24	0.39
HD 152248	ESB2	07III(f)+07.5III(f)	4.82	0.99
HD 152218	SB2	09IV+09.7V	5.6	0.76
CPD-41°7733	SB2	O8.5V+B3	5.68	0.38
WR 79	SB2	WC7+O6V	8.89	0.37
HD 152234	SB2	09.7I + 08V	126.6	0.83
HD 152247	SB2	09111+09.7V	~500	0.64
HD 152233	SB2	O6III(f)+ O8V:	~800	0.6
HD 152314	SB2	O8.5V+B1-3V	~3100	0.53
HD152076	single	O9.5III		
HD152200	single ?	O9.7V		
HD 152249	single	O9lb((f))		
HD326329	single	O9.5V		
HD326331	single	O8III((f))		
CPD-417721	single	O9V		
IC 2944				
HD 10 12 05	ESB2	O7V+OB:	~2	0.55
HD 101190	SB1	O6.5V	~8	
HD101131	SB2	O6V+O8.5V	9.6	0.61
HD100099	SB2	O9V+O9.5V	~20d	0.91
HD 10 14 36	SB2	07.5V+B0V	>20d	0.52
HD101413	SB2	O9III+B	Long P	0.45
HD 101191	SB1	08V	Long P	
HD101298	single	08V	Ŭ	
HD 101223	single	07.5V		
CPD-62 2198	single	O9.5III		
HD101333	single	O9.5V		

H. Sana et al. 2008

DIFFRACTION-LIMITED KLM-IMAGING

Example: massive O-star ($M_{K} = -7$, $M_{L} = -7$), obscured by $A_{V} = 200 \text{ mag} (A_{K} = 22, A_{L} = 12)$ at a distance of 4 kpc (DM = 13 mag), has $m_{K} \sim 28 \text{ mag}$ and $m_{L} = 18 \text{ mag}$, doable with E-ELT!

INTEGRAL FIELD SPECTROSCOPY

Definition "spaxel" FOV: 2 × 2 arcsec, 4k × 4k IR detectors (K, LM) pixel scale: 5 mas (K), 10 mas (LM) spectral resolution R = 10^4 (for RV variability) IR stellar spectroscopy in crowded cluster centers e.g. Br_a (2.17 μ m), Br_a (4.05 μ m); CO 2.3 μ m, 4.6 μ m This E-ELT science case will require the following focal plane instruments (many expensive 2kx2k infrared arrays)

MICADO:	adaptive optics K-band imaging
HARMONI:	super-SINFONI-IFU (K-band)
EAGLE:	imaging and multi-IFU (K-band)
METIS:	diffrlimited L-, M-band imaging
	and IFU spectroscopy

PS.: Why not use JWST? (6.5m diameter) ==> not enough angular resolution for the expected crowded fields

FIG. 1.—L1448 in false color. Component images have been weighted according to their flux in units of MJy sr⁻¹. *J* is blue, *H* is green, and K_s is red. Outflows from young stars glow red, while a small fan-shaped reflection nebula in the upper right is blue-green. Cloudshine, in contrast, is shown here as a muted glow with green edges. Dark features around extended bright objects (such as the reflection nebula) are the result of self-sky subtraction.

FIG. 2.—L1451 in false color. Again, each component image has been scaled to the same flux scale in units of MJy sr⁻¹; and *J* is blue, *H* is green, and K_s is red. A smaller map of 1.2 mm dust emission contours from COMPLETE (M. Tafalla 2006, in preparation) has been overlaid, showing that the color of cloudshine is a tracer of density. Redder regions have high dust continuum flux, and the edges of cloudshine match the edges of the dust emission. Dark edges around bright features (particularly noticeable along the northern edges) are the result of self-sky subtraction.

Conclusion

The study of massive star formation in deeply embedded clusters is all about

RESOLUTION, RESOLUTION !!

Focal plane, Focal plane !!

the E-ELT will likely provide a break-through considerable synergy with ALMA