

Neutron Star Astronomy in the E-ELT Era

Roberto P. Mignani (MSSL-UCL)

- On behalf of the OPTICON HTRA Working Group -

E-ELT DRM & DRSP Workshop, 26 – 28 May 2009, ESO Garching

Science Background

Overview

 After their discovery in 1967, ~1800 pulsars have been identified in radio

• P = 1.5 ms - 10 s

- Fast spinning Isolated Neutron Stars (INSs) born in SN explosions (Pacini 1968; Gold 1968) from progenitors of 8-20 M_{Sun}
- Magnetic dipole model (I=10⁴⁵ g cm²)
 - $B_p = 3x10^{19} (PxdP/dt)^{1/2} G$
 - Age = P/(2 dP/dt) yrs
 - Edot = 2π (dP/dt)/P² erg/s
- Radio observations alone do not yield to a complete understanding of NS physics

UCL

Science Background

Multi-wavelength observations of NSs

- Together with AGNs, pulsars are the only astrophysical objects which feature a **complete multi-wavelength phenomenology**, from radio to high-energy γ-rays
- The first pulsars to be detected outside the radio band was the Crab, detected in Xrays through balloon-borne experiments, right followed by the Vela pulsar
- The Crab and Vela pulsars were soon after detected in γ-rays by the NASA SAS-2 satellite
- The 1980s/90s marked a turnover with many more pulsars detected in X-rays by Einstein, ROSAT, ASCA and in the γ-rays by GRO
- By now, thanks to XMM, Chandra, Suzaku, a total of ~90 pulsars have been detected in X-rays, while ~50 have been detected in γ-rays by Fermi
- What about the optical/UV/IR (UVOIR)?

Science Background

The First Years

- The first pulsar B1919+21 (Hewish et al. 1968) was the natural target for optical observations (Ryle & Bailey 1968, Nature, 217, 907)
- The Crab (aka Baade's star) was the first optical pulsar identified (Cocke et al. 1969, Nature, 221, 525)
- The Crab optical polarisation was measured soon after (Cocke et al. 1969, Nature, 223, 576)
- Next most promising target: the Vela pulsar (Cocke et al. 1969, Nature, 222, 359)
- First attempts (Warner & Nather 1969, Nature, 222, 254; Nature, 223, 281; Hesser 1969, Nature, 223, 485) unsuccessfull
- Optical counterpart (Lasker 1976) confirmed by pulsations (Wallace et al. 1977, Nature, 266, 692)
- Optical pulsar (PSR B0540-69) discovered in the LMC (Middleditch & Pennypacker 1985, Nature, 313, 659)

The turn-off years

- Geminga, an unidentified γ-ray source discovered by SAS-2 and COS-B
- X-ray counterpart from *EINSTEIN* (Bignami et al. 1983)
- V=25.5 counterpart from the CFHT & ESO/3.6m (Bignami et al. 1987,88) ⇒ INS
- Proper motion with *NTT/SUSI* (Bignami et al. 1993) \Rightarrow INS

- Identified as an X/γ-ray pulsar by ROSAT/GRO (Halpern&Holt 1992; Bertsch et al. 1992)
- The first radio-silent pulsar !

UCL

Riding the Wave

- PSR B0656+14 was the next target: a pulsar of the Geminga class (but radio loud), also detected in X-rays by *EINSTEIN*
- Possible optical counterpart (V=25) identified in *ESO/3.6m* images in 1989
- Counterpart detection confirmed by NTT/EMMI observations (Caraveo et al. 1994a)

UCL

UCL

Riding the Wave (cnt'd)

Riding the Wave (cnt'd)

• Pulsar observations continued both with the *NTT* and the 3.6m (Mignani et al. 2000)

UCL

- Exploratory observations of several other pulsars
- The first high quality optical spectrum of the Crab
- The first proper motion ever of the Vela pulsar
- Monitoring of the Vela pulsar light curve
- Take part to the search for the pulsar in SN 1987A
- ¬ The *NTT* score triggered interest from the community.
- A new horizon was opened for pulsar studies !
- NTT observations paved the way to follow-up observations with the HST

The Wave does not break

- Optical observations of pulsars was a test case for the VLT/UT1 Science Verification
- The Vela-like PSR B1706-44 observed with the Test Camera (Mignani et al. 1999)
- First paper submitted from VLT !
- Pulsar observations continued with FORS and ISAAC
- Likely identification of the pulsars PSR J0108-1431 (Mignani et al. 2008) and B1133+16 (Zharikov et al. 2008)
- The first detection of the Vela pulsar in the IR (Shibanov et al. 2002)

More in-depth investigations

- Infrared spectrum of the Crab (Sollerman et al. 2000
- Optical spectrum of Vela, PSR B0656+14 and the LMC pulsar B0540-69 (Serafimovich et al. 2004)
- Multi-band photometry follow-up of HST detections (e.g., Zharikov et al. 2004)
- The first optical polarimetry observations of pulsars (Wagner&Seifert 2000; Mignani et al. 2007b), with P~5%-10% level (albeit with large errors)
- **Pulsar timing** tested on the Crab with the *FORS2 HITI* mode (ESO PR 40/99). Mostly carried out with guest instruments (e.g. *U-Cam*)

• The pulsar optical emission is due to the combination of **synchrotron radiation** (neutron star magnetosphere) and **thermal radiation** (neutron star surface)

Discovery of new INSs 4.33 1013 G

- Central Compact Object (CCOs)
- P=0.105-0.424s
- T> 100 kyrs ; >> SNR age
- Born slowly spinning with low (B <10¹¹ G) magnetic fields (anti-magnetars)
- Binary systems in SNRs ?
- Ultra-slow magnetars ?

UCL

VLT observations of Magnetars

- Magnetars are at 3-15 kpc in the Galactic Plane \Rightarrow extinction (A_v~30), crowding
- Deep, high resolution **AO** imaging
- Bursting ⇒ quick ToO response to a Swift trigger.
- Most magnetars identified by VLT
- Accretion models ruled out ⇒ support the magnetar scenario
- (L_{IR}/Edot)^{mag} >> (L_{IR}/Edot)^{psr}
- IR also powered by the magnetic field or by X-ray reprocessing in a fallback disc formed out of the SN ?

^AUCL

VLT observations of X-ray Dim INS

- Optical identification of RX J0720.4-3125 with the NTT (Motch&Haberl 1998)
- Proper motion measured with the VLT (Motch et al. 2003)
- *HST* parallax \Rightarrow V>>10 km s⁻¹ \Rightarrow **no ISM accretion**
- X-ray/optical thermal radiation from the NS surface
- Evidence from VLT low-resolution spectroscopy of RX J1856-3754 (Kulkarni & van Kerkwijk 2001)
- However, not the case for RBS 1774 (Zane et al. 2008), the X-ray Dim INS with the largest magnetic field
- Non-thermal radiation powered by the magnetic field ?
- A possible link with the magnetars ?

VLT observations of other INSs

- For all other INS types, the *VLT* took the lead of optical/IR follow-ups
- CCO upper limits consistent with undetected <M5 companion, NS, disc (Mignani et al. 2007; 2008; 2009)
- For the RRATs, deep investigations still in progress (Rea et al. 2009)

The Full Monty LICL										
	Name	Age	mag	D(kpc)	A _v	Phot	Spec	Pol	Puls	
A-ray Aagnetars DIM Pulsars INSs	Crab	3.10	16.5	1.73	1.6	UVOIR	Y	Y	Р	
	B1509-58	3.19	26	4.2	5.2	0		Y, P.A.		
	B0540-69	3.22	22	49.4	0.6	0	Y	Y, P.A.	Р	
	Vela	4.05	23.6	0.23	0.2	UVOIR	Y	Y, P.A.	Р	
	B0656+14	5.05	25	0.29	0.09	UVOIR	Y	Y	Р	
	Geminga	5.53	25.5	0.16	0.07	UVOIR	Y		Р	
	B1055-52	5.73	24.9	0.72	0.22	UVO				
	B1929+10	6.49	25.6	0.33	0.15	UV		Need for a		
	B0950+08	7.24	27.1	0.26	0.03	UVO				
	B1133+16	6.69	28	0.35	0.12	0		colleting power larger than that Of the VLT		
	J0108-1431	8.3	27.	0.3		0				
	J0437-471	9.20		0.14	0.11	UV	Υ			
	J1308.6+2127	6.17	28.6	<1	0.14	0				
	J0720-3125	6.27	26.7	0.35	0.10	0				
	J1856-3754	6.60	25.7	0.14	0.12	0	Y			
	J1605.3+3249	-	26.8	<1	0.06	0				
	RBS1774	-	27.4	<0.5	0.2	0				
	SGR1806-20	3.14	20.1	15	29	IR				
	1E 1547.0-5408	3.14	18.5	9	17	IR				
	1E 1048.1-5937	3.63	21.3	3	6.1	OIR		Y,P.A.	Р	
	XTE J1810-197	3.75	20.8	4	5.1	IR		Y,P.A.		
	SGR 0501+4516	4.1	19.1	-	5	IR				
\geq	4U 0142+61	4.84	20.1	>5	5.1	OIR			Р	
	1E 2259+586	5.34	21.7	3	5.7	IR				

Moving into a New Era

The E-ELT will allow to carry out NS studies only explored with the VLT

[±]UCL

Science Cases for the E-ELT: NS Imaging

- Imaging gives detections. AO to cope with crowding in the GC.
- Radio-loud INSs still represent the largest fraction of the known INS population
- Natural targets for INS imaging with the *E-ELT* (*positions more accurate, distance known from Dispersion Measures, pulsar parameters from timing*)
- After 40 years, the optical emission properties of pulsars are still poorly understood
- More detections are needed to test the predictions of the L_{opt} ∝ B⁴ P⁻¹⁰ (Pacini & Salvati 1983)
- More detections are needed to study the dependence of the optical luminosity vs. the pulsar age and the Edot L_{opt} ∝ Edot ^α, where α~0.9-1.6 (Shearer et al. 2001; Mignani et al. 2004)
- More generally, a statistically improved sample is needed for a comparison of the pulsar behavior at other wavelengths

LOFAR

Science Cases for the E-ELT: NS Imaging

- 1000s of new pulsars to be discovered by future radio surveys
- Wherever the *E-ELT*, major radio facilities planned in both hemispheres

Low Frequencies Array - LOFAR (NL, UK, France, Germany, DK, Sweden)

<250 MHz

UCL

www.lofar.org

Square Kilometer Array - SKA (South Africa or Australia)

www.skatelescope.org 60 MHz - 35 GHz

医白喉 法当时代 合法学 化化合合化合合化的

Science Cases for the E-ELT: NS Imaging

- Optical/IR detections proved crucial to understand the nature of peculiar, radio-silent, INSs detected through X-ray observations
- 1990s: ROSAT and NTT
- 2000s: *XMM* and *VLT*
- 2020s: IXO and E-ELT
- Advances in X-ray satellites require advances in optical/IR telescopes for deeper follow-ups

- Like Geminga, many more radio-silent INSs are now emerging in γ-rays from Fermi observations, which escaped detection in radio surveys and whose study in the optical/IR might need the E-ELT
- E-ELT is not too late! Multi-λ follow-ups will continue beyond the *Fermi* operational lifetime

Science Cases for the E-ELT: NS Spectroscopy

• Spectroscopy will allow to:

better disentagle spectral components find spectral features (e.g. cyclotron) and direct measurement of the NS magnetic field find features from ISM/disc accretion, atmosphere

determine the temperature of thermal radiation test cooling curve models better map the temperature distribution study conductivy in the neutron star interior investigate re-heating processes

detect fallback discs (size, temperature) test SN explosion models trace the post-SN NS evolution disc/NS torque, accretion investigate planet formation

 Goals possible with HARMONI (0.8-2.4 μm) and METIS (3-13 μm)

Science Cases for the E-ELT: NS Polarimetry

test magneto-dynamical interactions and spin/velocity/polarisation alignments

X-ray axis

UCL

study the magnetic field evolution following a magnetar burst

investigate the existence of a magnetised atmosphere around the neutron star

Science Cases for the E-ELT: NS Timing

• Timing will allow to study:

the λ dependance of a pulsar light curve and magnetosphere emission models
the production of Giant Pulses and the link between coherent/incoherent radiation
radiation reprocessing in fallback discs (delay,smearing)

• Time-resolved spectroscopy allows to map the:

particle distribution in the NS magnetosphere temperature distribution on the NS surface

• Time-resolved polarimetry allows to map:

the **geometry** of the NS magnetic field (polarisation varies across the period)

UCL

Science Cases for the E-ELT: NS Astrometry

- Most of the INSs detected at high-energies are **radio-silent**
- Proper motions and parallaxes can not be measured through radio astrometry
- Λ X-ray astrometry with *Chandra* requires a long time baseline
- Λ Plus, *Chandra* is 10 years old already. Not a solution for the future !
- Λ IXO (>2020) will not have the spatial resolution of *Chandra* !
- From the Geminga experience, the only possibility is **optical/IR astrometry**
- Optical/IR astrometry with *MICADO* (0.8-2.4 μ m) will allow to measure with unprecedented accuracy proper motions up to the LMC and parallaxes at >1 kpc
 - Multi- λ luminosity, galactic orbits, birth place localisation, progenitor stars

Science Cases for the E-ELT: The NS Origin

- INS manifet in a variety of flavours. What explains the INS diversity?
- The progenitor ? The NS birth? The post-SN phase?
- Many questions can be addressed by studing the INS progenitor stellar population
- Why some NSs are born as magnetars? How is the magnetic field produced ?
- Some magnetars might be associated with distant cluster of super massive (>40 M_{sun}) stars (to be confirmed by *astrometry*)
- Dynamo process in the proto-NS after an hyper-energetic SN ?
- Collapse of hyper-magnetic progenitor?
- **Spectro-polarimetry** of the faint cluster stars yields their magnetic field from the Zeeman line splitting

UCL

Conclusions

- 40 years after identification of the Crab, optical astronomy of INSs is still a very active field, where ESO marked important milestones with both the NTT and the VLT
- Optical studies represent an important tile to characterise the multi-wavelength phenomenology of INSs
- Optical studies are crucial to understand the diversity of different type of INSs
- Optical studies are fundamental to address several issue on neutron star physics, formation, and evolution
- This requires more in-depth investigations, so far only explored with 8m-class telescopes. **Only the** *E-ELT* **can provide this opportunity**

