

Supernovae and GRB Explosions with ELT

F. Mannucci INAF-Firenze

I. Hook, M. Della Valle, E. Cappellaro, R. Gilmozzi, W. Taylor

SNe and GRB

F. Mannucci INAF - Arcetri

SNe are fundamental elements:

- 1. Dominate the chemical evolution of the universe
- 2. Dynamics of ISM
- 3. Feedback during galaxy formation
- 4. Dust production at high redshift
- 5. Both CC and Ia are important cosmological probes

GRB: most luminous objects in the universe for a few hours/days

Observationally

- Very bright
- Very common

E-ELT role:

- Collecting area
- Spatial resolution: point sources

cosmology

Scientific topics

F. Mannucci INAF - Arcetri

What I'll present::

- 1. Ia as cosmological probes
- 2. CC as cosmological probes
- 3. SFH from the rate of CC
- 4. Progenitors of la
- 5. High-z GRBs

What I won't present

- 1. Dust enshrouded SNe in starburst galaxies
- 2. PP SNe from Pop III stars
- 3. Shock-breakouts
- 4. All the possible studies about physics and properties of SNe and GRB

- Ia Sne: direct probes of cosmological parameters
- very good data up to z~1
- well known probes

Cosmology with ELT and JWST

F. Mannucci INAF - Arcetri

DRM workshop

Garching 5/09

Kowalski et al 2008

Better and at higher redshifts:
w~P/p dw/dt ? Nature of dark energy

•Why $\Omega_{\Lambda} \cong \Omega_m$?

evolution

F. Mannucci INAF - Arcetri

Filter	la		
	Ζ	ABmag	
J	1.7	25.2	
Н	2.8	26.1	
К	4.0	26.7	

The role of E-ELT

Instrument	FoV	AB Limit 10σ, 10 ⁴ sec	z max (∆m=+1)	Vol (z>1) kMpc³/fld	la/field/year (η=1)
MICADO + MCAO 3 mas	1'x1'	J= 29.2	z<2.7	5	0.5
		K=29.2	z<4.6	12	1.1
JWST/NIRCAM	2'x4'	K=29.0	z=4.6	95	8.5
VLT + GLAO		K=24.7			

Extremely Wide Field Imager?

EUEWFI + GLAO		J=27.0	z<2.1	85	7.8	
70 mas 1 det	5 X S	K=26.5	z<2.0	76	6.9	
EUEWFI + sMCAO 30 mas 4 det 5'		J=28.0	z<2.5	120	11.0	
	5 X 5	K=28.0	z<4.0	250	22.5	
Limits: MICADC	: 5mas pix, 3x	GLAO: 50	Dmas pix, 5x5	EU: 10 ma	as/pix, 5x5	

Finding SNe requires large fields and good PSFs -> Better from space...

... but possible from the ground too

GENERAL QUESTION: JWST: 2014+5 yr E-ELT=2018 Who will provide new targets at the ELT spectroscopic limit after 2020?

The role of E-ELT

F. Mannucci INAF - Arcetri

Instrument	band	R	AB Limit 10σ 10 ⁴ sec	z max (Δm=0)
JWST/NIRSPEC	J	1000	24.1	z<0.9
	К	1000	24.2	z<0.6
HARMONI	J	1000	26.6	z<2.6
	К	1000	26.2	z<2.8

Limits: aper=15mas LTAO

Instrument requirement:

- LTAO
- R~5000 for OH software masking or R~500 with OH suppressor

Strategy

- 1. JWST to monitor ~10 fields every ~30d for 2 yr -> 50 SNe (considering det. eff.)
- 2. HARMONI or EAGLE to obtain spectroscopy

Cosmology with CC

F. Mannucci INAF - Arcetri

SFH from CC

- Short CC lifetimes < 50 Myr -> instantaneous SFR \bullet
- CC SNe: $8 < M \odot < 12$, while lonizing photons: \bullet M>30MO -> less dependent of the high-mass end of the IMF

Type II-P

- Red supergiants
- fainter than la
- much more common
- H-rich, optically thick expanding envelope

Cosmology

• estimate intrinsic size and luminosity

 Completely different systematics w.r.t type la: independent probe

ELT: spectroscopy of type IIP at plateau up to z~2

Properties of type la progenitors

F. Mannucci INAF - Arcetri

Different progenitors -> Different delay time distributions (DTD)

- 1. Single gaussians
- 2. Bymodal
- 3. smooth

DRM workshop

Garching 5/09

Properties of type la progenitors

F. Mannucci INAF - Arcetri

Maoz & Mannucci 2008

- RGB companions up to ~ 10Mpc
- SG, UMS?

DRM workshop

Garching 5/09

- Spectroscopy, imagining?
- pre-post images?

Mannucci et al 2006

Varying CC/Ia rate ratio

Wavelength [Å]

GRBs before reionization

F. Mannucci INAF - Arcetri

• GRB09423 z=8.1 !

DRM workshop

Garching 5/09

Metallicity evolution, abundance ratios

- metal-rich GRB environment
- metal-poor intervening systems
- signature of Pop III stars
- dust content (Zn/Fe)

Requires:

0

 $^{-2}$

-3

DLα

1

2

Redshift

3

[H/uZ]

- large collecting area
- near-IR observations

F. Mannucci

INAF - Arcetri

INAF - Arcet

F. Mannucci INAF - Arcetri

Statistics of gaps (Gallerani et al 2009)

F. Mannucci INAF - Arcetri

How many GRB?

Reaction time = 1h:

- ~1 GRB/year at J_{AB} <18 and z>5
- ~4 GRB/year at J_{AB}<20 and z>5

F. Mannucci INAF - Arcetri

Requirements:

- 1. On time (or same delay...)! JWST is aging....
- 2. EUEWFI (5'x5') with GLAO/MOAO useful
- 3. Rapid (~0.5h) response ?
- 4. **SIMPLE**: IGM at z>7
- 5. EAGLE or HARMONI: SN at z=4
- 6. EAGLE or HARMONI and MICADO: progenitors