Observing giant-planet-mass objects in the LMC with E-ELT Annalisa Calamida - E-ELT Science Office Post-doc 11

Garching, May the 28th, 2009

Is the E-ELT really big?! ;)

-8 yrs

1929 yrs

DRSP form

Are any of the targets variable? Do they require repeated observations?

DRM proposal by F. Comeron & H. Zinnecker Simulations by me!

Constrain the low-mass luminosity function

of a young star forming region in LMC down

to giant planet masses (M < 13MJup)

• S Ori 60

Why LMC ?

Goals!

- > Evolution of low-mass cut-off with metallicity
- > What do low-mass, low metallicity BDs look like?
- > How does the opacity limit depends on metallicity?

Challenges!

- > coexistence of main targets with much brighter stars (18 < K \leq 30 mag)
- > very small sizes of star forming regions (~ 2" at the distance of LMC)
- > crowding (~ 20 star/arcsec²)

Need good on-axis AO correction

Some details on the simulations... Technical data

> J, H, K-band Laser Tomography AO (LTAO) simulated

PSFs (DRM technical database):

D=42m, 6 LGS, seeing = 0.8" at 0.5 μ m, zd = 0 (zd = 30,60 only for the K-band) \rightarrow **PSF fits** by J. Liske

> Pixel scale: 2, 2.6, 3.5 mas (PSF sampling) and 5 mas

✓ The PSF does not vary in the region

No contamination by field stars and galaxies

Technical data

Unresolved → variation lenghtscale < PSF FWHM

additional source of noise

Typical emission nebulosity has blue colors: (J-H) ~ -0.9, (H-K) ~ -0.6

Background level of J ~ 23.9, H ~ 24.8 and K ~ 25.4

Input star catalog:

> Chabrier (2005) IMF + Baraffe (2003) evolutionary tracks

for t = 5 Myr and solar metallicity:

100 stars from 2 to 0.003 MO uniformly distributed in a circular area with $R \approx 1$ arcsec

DM₀ = 18.5 (LMC, Freedman

et al. 2001)

Scientific inputs

25 K-band images

Uniform background

 $t_{exp} = 1h$

Sky = 13 mag/arcsec²

Pixel scale = 3.5 mas

25 H-band images

Uniform background

$$t_{exp} = 1h$$

Sky = 14 mag/arcsec²

Pixel scale = 2.6 mas

10 J-band images

Uniform background

 $t_{exp} = 1h$

Sky = 16 mag/arcsec^2

Pixel scale = 2 mas

Image reduction

PSF-photometry with DAOPHOT/ALLSTAR:

- Analytical + numerical Moffat function Residual matrix

 $(\beta = 2.5)$ (β = 2.5)

Median of the subtracted images

Magnitude scatter:

$$S = \sqrt{\frac{1}{N} \sum (input - re \operatorname{cov} ered)^2}$$

Band		Pix scale (mas)	Lim . Mag (S/N~4)	Scatter 0.2 mag	Scatter 0.1 mag
	Juni	2	30.1	29.5	29.0
	Jvar	2	29.0	28.7	28.0
Jvar		5	26.0	25.5	24.0
	Huni	2.6	29.6	29.2	28.0
	Hvar	2.6	29.0	28.6	27.3
	Hvar	5	27.6	25.8	24.0
	Kuni	3.5	29.8	29.3	27.6
	Kvar	3.5	29.5	28.8	27.5
	Kvar	5	28.4	27.8	26.2
	Kzd30	3.5	28.8	28.6	28.6
	Kzd60	3.5	28.6	28.3	27.5

Zenith distance

Limiting magnitude

decreases of ~ 1 mag

Scatter increases for

K > 26 mag

To increase the statistics: 10,000 stars in a circle of radius 10"

 $\sim 10^{"}$ to preserve the stellar density

Completeness

Recovered fraction of stars at different

magnitudes and masses

Band	90% mag	50% mag	90% MJup	50% MJup
J	29.15	29.4	24	16
Η	28.8	29.4	18	12
K	28.6	29.3	17	9

We accomplish proposal goal and reach:

J ~ 29.1, H ~ 28.8 and K ~ 28.6 with **S/N=10**

Variable background

The presence of variable background decreases the S/N at a certain magnitude

blue colors:

(J-H) ~ -0.9, (H-K) ~ -0.6

We reach J ~ 29.1, H~ 28.8, K~ 28.6 but with 5 ≤ S/N < 10

Conclusions

We reach J, K ~ 29.1-28.6 mag (~17-24 Mjup, 90%

completeness) and 29.3-29.4 mag (~9-16 Mjup 50%

completeness) with 5 ≤ S/N ≤ 10 in Ttot = 60h + overh. (if

pixel scale < 4 mas!)</pre>

With E-ELT we will observe:

> Nearly complete sample of young BDs above the

deuterium-burning limit (M~13 MJup) in LMC and possibly

in other galaxies;

> PMOs ($M \le 10 M_{Jup}$) in the LMC in favorable conditions

Required improvements

> Completeness analysis performed only for zd = 0 but LMC has $\delta = -69^\circ$ -> need PSF fits for LTAO K-band PSF with zd=30, 60

Possible improvements

Feed directly to DAOPHOT the analytical form of the

LTAO PSF

Try to use another crowded field photometry software

such as Starfinder

Stellar light reflected by dust: reflection nebulosity with a total reprocessed emission in the K-band equivalent to 1/10 of the solar luminosity in that band, and typical emission nebulosity blue colors (J-H)=-0.9, (H-K0)= -0.6, we obtain a background level of J = 23.9, H=24.8 and K = 25.4

5 Mjup with t = 1 Myr -> Mj~10.6, Mh~ 10.2, Mk~9.7

$$C = \frac{1}{e^{(mag - mag_{50})} + 1}$$

$$\Delta m \approx 2.5 \log \left(\frac{S+N}{S}\right) \approx (2.5)(0.43429) \ln \left(\frac{S+N}{S}\right) \approx (2.5)(0.43429) \frac{N}{S} \approx 1.0857 \frac{N}{S}$$

