

Mid-IR Science with METIS

Bernhard Brandl & Ralf Siebenmorgen DRSP Workshop @ ESO, Garching 27-05-2009

Why Mid-IR?

- 1. Objects that are very dusty: $\tau_{vis} \sim 15 \times \tau_{MIR}$ (e.g., newly forming stars and centers of galaxies)
- 2. Objects that intrinsically cool: $\Delta T_{1-2.5\mu m} = 1200 2900K$, $\Delta T_{LMN} = 200 1000K$ (e.g., brown dwarfs, planets, molecular clouds as well as reradiated light ("warm dust") from very massive stars or active galactic nuclei)

- 3. Redshifted objects: $\lambda_{obs} = \lambda_{rest} \times (1 + z)$. (e.g., H- α , Pa- β , Br- γ shifted into the L-band)
- 4. Richness in unique spectral features (atomic fine-structure and hydrogen lines, isotopes, H₂ pure-rotational transitions, PAHs, crystalline and amorphous silicates, features of H₂O, CO, CH₄, CH₃OH, NH₃, OCN⁻, H₃⁺, C₂H₂, HCN, OH, ...)
- 5. Magnetic field measurements: magnetic field → dust grain alignment
 → passing radiation becomes partially polarized → (spectro-)polarimetry of dust (e.g., YSOs, AGN, ...)
 28/05/2009 B.R.Brandl Mid-IR Science with METIS

The Unique Mid-IR Parameter Space for the E-ELT

- with respect to JWST:
 - 6.5 times higher **angular resolution**
 - unique high spectral resolution
 - unique **polarimetri**c measurements
- with respect to ALMA
 - complementary temperature zones
 - complementary molecular species

wavelength (nm)

3

model spectra of disks with C_2H_2 at 900K and HCN at 600K

Similar aperture ratio than for JWST – MIRI 🗇 E-ELT – METIS

28/05/2009

B.R.Brandl – Mid-IR Science with METIS

- A diffraction limited imager for $3 14 \mu m$
- A low resolution spectrometer
- A high resolution (R~100,000) spectrometer (IFU?)
- Coronagraphy?!
- Polarimetry?!

- Conditions in the Early Solar System
- Formation and Evolution of Proto-planetary Disks
- **Properties of Exoplanets** ← talk by Wolfgang Brandner
- Chemical Pathways in the Martian Atmosphere
- Kuiper Belt Objects
- Properties of Brown Dwarfs
- Formation of Massive Stars
- Galactic Center ← talk by Andreas Eckart
- Life Cycle of Cosmic Dust
- Massive Star Forming Regions (IMF, Disks, ...)

- The Growth of Supermassive Black Holes
- Properties of the Hosts of Sub-mm Galaxies
- Formation and Evolution of Super Star Clusters
- Assembly of Galaxies at intermediate z
- Gamma-Ray Bursts as Cosmological Probes

- Physical structure of the **gas vs. dust disk**? Is there evidence for young planets, e.g., through the presence of holes or gaps in the planet-forming regions?
- Timescale and mechanism for **gas dissipation** (photo-evaporation, disk winds, planets, ...).
- Dynamics and **turbulence of the gas** as a function of radius. Departures from Keplerian rotation and continuing infall?
- **Chemical content** of the inner disk as a function of radius (water, organic molecules, grain growth, annealing of silicates, ...).

Spectro-Astrometry

- 1. Take a slit spectrum.
- 2. At each wavelength fit a Gauss to the spatial emission profile.
- 3. Plot the centroid as a function of wavelength.
- ➔ Huge gain in resolution compared to the diffraction limit* (but only for 0th moment).
- *0.1 marcsec with CRIRES!

P(1.2,4,5,7,8,10,11)

Velocity [km/s]

30

20

-30

-20

-10

HD 135344B v=1-0

Pontoppidan et al. 2008 B.R.Brandl – Mid-IR Science with METIS

28/05/2009

Information in the Line Profile

Photo-evaporation of disks

Departures from Keplerian rotation?

Imaging H₂O Vapour in the Planetforming Zone

- $3\mu m H_2O$ hot band lines, $1M_o$ star
- Model made with RAD-Lite by Klaus M. Pontoppidan and Cornelis P. Dullemond
- Includes gas lines and dust continuum

Imaging H₂O Vapor – Model and METIS Observations

→ Spatially resolved spectroscopy is essential!

28/05/2009

Molecular Spectroscopy: Simulations of 1 hour VISIR and METIS in the 12 μ m range as seen from Paranal (only H₂O is modelled) – courtesy Klaus Pontoppidan

- **PP disk imaging** in the interesting region of 5-10 AU at the distance of the nearest star forming regions, ~ 150 targets, ~1 hour per target.
- Debris-disk imaging will show the exo-zodiacal light in the "habitable zone" and search for exoplanets by the indirect technique of "footprints" in a disk.
 ~300 nearby stars, ~ 1 hour per target.
- **Spectro-astrometry** via CO kinematics for 50 100 disks, ~2 hr per target.
- Disk spectroscopy in the H₂ S(2) 12μm lines, ~25 excellent targets ~1 hour per target.
- Key program for H₂O (← Spitzer, Herschel, JWST) water for 50 100 disks, ~5 hr per target.

The Growth of Supermassive Black Holes (SMBHs):

- origin of the relation between SMBH and bulge/galaxy mass
- understand QSO activity at high-z
- understand evolution of nuclear starburst activity

Formation and Environment of Super Star Clusters:

 Are the most luminous starbursts scaled up versions of local regions of massive star formation? → SB unit cells? SFE? Triggering? Feedback? IMF? ISM structure?

...and the relation between the two in the active centers of galaxies

Growth of SMBHs

Sphere of influence of a SMBH: $\theta_{\rm BH} = 0.03'' \left(\frac{M_{\rm BH}}{10^8 M_{\rm O}}\right)^{0.5} \left(\frac{100 \text{ Mpc}}{D}\right)$

Table 3-4: Black hole masses and radii of influence for nearby AGNs and (U)LIRGs.

Target	D [Mpc]	М_{ВН} [М _о]	<mark>Ө_{ВН}</mark> ["]	Notes	
Cen A	3.5	$4.5 \cdot 10^{7}$	0.6	Neumayer et al. 2007	
Circinus	3.9	1.3·10 ⁶	0.09	Greenhill et al. 2003	[NeII] 12 8um velocity field
NGC4945	4.0	$1.4 \cdot 10^{6}$	0.09	Greenhill et al. 1997	of NCC7E92
NGC1068	14	$1.0.10^{7}$	0.07	Greenhill et al. 1996	0j NGC7582
NGC7582	21	$5.5 \cdot 10^{7}$	0.11	Wold et al. 2006	
Arp220	70	$pprox 10^{8}$	0.06	Black hole mass estimated	d,
NGC6240	100	$pprox 10^8$	0.03	Black hole mass estimated	d,

Unresolved with VLT, hopeless for JWST-MIRI but doable with METIS!

About 100 good targets to z=0.1 on one hemisphere; ~5hr per target

(Wold et al. 2006) – VISIR at 0.4" resolution.

Super Star Clusters as we (don't) know them

- NGC 604 in M33
 - 30 Dor (NGC 2070) in the LMC
 - are located in "quiescent" regions

Are those scalable to Arp 220 – type environments?

Super Star Clusters and their Surroundings

← idealized picture of an HIIR/PDR interface (Charlot & Fall 2000) – and a real example:

Chandra 0.5 - 0.7 keV IRAC $3.2 - 4.0 \mu m$ IRAC $6.5 - 9.4 \mu m$

E-ELT – METIS: 10 pc resolution \rightarrow resolve HII / PDR / diffuse ISM

μετίς

- Diffraction limited imager [18"×18"] for L/M, and N band
 - includes 4QZOG coronagraph (N-band only)
 - includes low-resolution ($R \le 5000$) long-slit spectrometer
 - includes polarimeter (N-band only)

• High resolution IFU [≥ 0.4 "×1.6"] spectrograph for L/M [2.9 – 5.3µm, R ~ 100,000] band

METIS at the Telescope

