

E-ELT circumstellar disk simulations status

Mark McCaughrean Astrophysics Group, School of Physics

E-ELT SWG meeting, ESO Garching, October 9 2007

Two core science cases for the DRM

\star High spatial resolution imaging at 2-20µm

- ★ Search for structures in disks indicative of ongoing or completed planet formation: gaps, rings, spiral density waves
- ★ Young, optically-thick disks in star forming regions
- ★ Older, optically-thin dust debris disks in solar neighbourhood
- ★ Diffraction-limited broad/medium/narrow-band imaging
- ★ Single object, small FOV

\star Spectroscopy of gas and dust at 2-20µm

- **★** Tracing dynamics and physical/astrochemical evolution
- ★ Watching the transition to protoplanets at 1-100 Myr
- ★ R=300, 3000, 100 000 spectroscopy
- ★ High Strehl ratio useful to increase sensitivity
- ★ IFU spectroscopy useful to image differential structures in disk

Start made on imaging simulations

★ Monte-Carlo radiative transfer simulations for young, low-mass circumstellar disk

- ★ Done by Christophe Pinte (Exeter) using MC FOST code
 - Computationally intensive at small pixel scales: some imprinting of model grid still visible

★ Modelled on IM Lup system

- Soung system with optically-thin disk seen in scattered light at optical/near-IR wavelengths
- Star: T_{eff} 3900K, 3 solar radii, at distance of 140 pc
- Disk: dust mass 10⁻³ M_☉ (total mass 0.1M_☉), inner radius 0.775AU, outer radius 400AU; no gaps

★ Simulations set spans range of parameters

- I, J, K, L-band images at 10 inclinations (18, 31, 42, 49, 57, 63, 70, 76, 81, 87 degrees)
- All Stokes polarisation states available too

★ Pixel scale set at 5 mas

- I AU at 140 pc = 7 mas; diffraction limit of 42 m E-ELT at 2 μ m = 12 mas
- ★ Convolved with E-ELT LTAO PSFs at I, J, K, L
 - Provided by Joe Liske
- ★ Model fluxes are calibrated so full S/N calculations possible

Pure model simulation

81 degree inclination; I, K, L colour composite; logarithmic intensity scaling

Simulation convolved with E-ELT PSFs

81 degree inclination; I, K, L colour composite; logarithmic intensity scaling; 42m E-ELT LTAO PSFs

Initial thoughts

\star Poor short-λ AO performance washes out detail

- **★** Better to concentrate on longer- λ 's?
- **★** But smaller span in λ is less diagnostic of disk/dust properties
- **★** Also shorter λ 's still have nominally higher spatial resolution
- ★ Can deconvolution be applied?
- ★ Need to add structures (gaps, rings)

See how good feature contrast is after PSF convolution

* Need to run proper S/N calculations to add noise

★ Images are flux calibrated so relatively trivial

 \star Need PSFs for longer λ's out to 20µm

* Need also to look at optically-thin debris disks