

The E-ELT Science Case

A Gazillion People

Overview

Some documents:

- OWL Blue Book
- Science case for the European Extremely Large Telescope
- Report of the ELT Science Working Group
- E-ELT project web pages New Science pages in the making!
- OPTICON ELT web pages at http://wwwastro.physics.ox.ac.uk/~imh/ELT/

Science Case Overview

- Planets and Stars
 - Solar system comets
 - Extra-solar system comets
 - From giant to terrestrial exoplanets: detection, characterization and evolution
 - Freely-floating planetary mass objects
 - Young stellar clusters
 - Origin of massive stars
 - LMC and SMC field star population
 - Circumstellar disks
 - Stellar remnants: black holes and neutron stars
 - Asteroseismology

Science Case Overview

- Stars and Galaxies
 - The intracluster stellar population
 - Planetary Nebulae as tracers of the element abundances in early type galaxies and diffuse light in clusters
 - Stellar clusters and the evolution of galaxies
 - Imaging and spectroscopy of resolved stellar populations in galaxies
 - Spectral observations of star clusters
 - Young massive star clusters
 - Measuring the stellar IMF in local group galaxies
 - Star formation history through supernovae
 - Black holes and AGN demographics

Science Case Overview

- Galaxies and Cosmology
 - Galaxy formation and evolution
 - Physics of high redshift galaxies
 - Deep galaxy studies at z=2-5
 - Galaxies and AGN at the end of reionization
 - First light The highest redshift galaxies (z>10)
 - Topology of the IGM at z = 2-3
 - Is the low-density IGM metal-enriched?
 - Probing reionization with GRBs and QSOs
 - Gravitational lensing
 - Dark energy Type Ia supernovae as distance indicators
 - A dynamical measurement of the expansion history of the Universe
 - Testing the variability of fundamental constants

9 Prominent Science Cases

"Prominent" science cases are considered to be among the most important scientifically and are useful for defining capabilities of the telescope.

- Planets and Stars
 - From giant to terrestrial exoplanets: detection, characterization and evolution
 - Young stellar clusters
 - Circumstellar disks
- Stars and Galaxies
 - Imaging and spectroscopy of resolved stellar populations in galaxies
 - Black holes and AGN demographics
- Galaxies and Cosmology
 - Physics of high redshift galaxies
 - First light The highest redshift galaxies (z>10)
 - Is the low-density IGM metal-enriched?
 - A dynamical measurement of the expansion history of the Universe

9 Prominent Science Cases

"Prominent" science cases are considered to be among the most important scientifically and are useful for defining capabilities of the telescope.

- Planets and Stars
 - From giant to terrestrial exoplanets: detection, characterization and evolution
 - Young stellar clusters
 - Circumstellar disks
- Stars and Galaxies
 - Imaging and spectroscopy of resolved stellar populations in galaxies
 - Black holes and AGN demographics
- Galaxies and Cosmology
 - Physics of high redshift galaxies
 - First light The highest redshift galaxies (z>10)
 - Is the low-density IGM metal-enriched?
 - A dynamical measurement of the expansion history of the Universe

Planets - Solar System

Extrasolar Planets

ESO Press Photo 29a/06 (3 August 2006)

© ESO

Questions

- How do planetary systems form?
- What are the planetary environments around other stars?
- How typical is our solar system?
- Are there other Earths?
- If so, is there life on them?
- How important is evolution for habitability?

How to find exoplanets

© ESO

Radial Velocity Curve of Gliese 581 (HARPS/3.6-m)

ESO PR Photo 37/05 (November 30, 2005)

High-mass planets with short periods are easiest to find.

Finding Earths is very hard!

Other detection methods

- Astrometry
- Transit
- Microlensing
- Direct imaging

What the E-ELT will be able to do

<u>Discovery and characterization of exoplanets down to Earth-</u> <u>like masses in the habitable zone</u>

• Direct imaging survey for planets around 150 stars within 20 kpc of the sun. Detecting Earths in the habitable zone requires a brightness contrast of 10^{-10} at 50 mas separation!

0.1 arcsec

At ~400 km distance!

What the E-ELT will be able to do

What the E-ELT will be able to do

Discovery and characterization of exoplanets down to Earthlike masses in the habitable zone

- Follow-up low-resolution spectroscopy of discovered planets.
- ⇒ mass, radius, composition, atmosphere, temperature of planets. Detection of biomarkers?

Questions

- How do planetary systems form?
- What are the planetary environments around other stars?
- How typical is our solar system?
- Are there other Earths?
- If so, is there life on them?
- How important is evolution for habitability?

- How do planetary systems form?
- What are the planetary environments around other stars?
- / How typical is our solar system?
- Are there other Earths?
 - If so, is there life on them?
 - How important is evolution for habitability?

