

Simulations of crowded stellar fields

Joe Liske

Resolved stellar populations

 To understand the formation of various types of galaxies we have to investigate the properties of their stellar components.

 Disentangling a galaxy's various stellar populations gives insight into its star formation history and thereby indicates the major events in its life: formation and major mergers.

 We'd like to be able to do this at the distance of Virgo to study the nearest giant ellipticals.

Resolved stellar populations

Some questions to the DRM:

- At the distance of Virgo, how far down the luminosity function will we be able to probe?
- What limits the above?
- Which are the best wavelengths to use?
- What is the trade-off between field size and quality of AO correction?
- How sensitive are any results to variations of the scientific and technical input data (SFH, IMF, PSFs, etc)?

Simulation 'pipeline'

Simulation 'pipeline'

Making a stellar population

- Choose model / set of isochrones:
 - Scaled solar / alpha-enhanced
 - Canonical / non-canonical
 - Chemical composition
- Specify IMF
- Specify SFH

- Stellar population with relative weights between different types of stars
- Limitations:
 - No interpolation between isochrones, i.e. stuck with ages at which isochrones have been computed.
 - What about binarity?

Making an object catalogue

- Specify distance modulus
- Surface brightness
- Size of field of view
- Populate CMD randomly according to weights from stellar population
- Distribute randomly on sky according to a given spatial distribution

Making an image

- Technical and observation parameters:
 background, atmospheric throughput, telescope
 size, telescope throughput, instrument throughput,
 pixel size, detector noise, AO correction, etc.
- Using IRAF/mkobjects to create images
- Limitations:
 - Slow
 - Can't vary PSF smoothly as a function of position in the field of view
 - Interpolation ok?

Background model

Limitations:

- Model for sky brightness due to moon
- Variability of OH lines

PSFs

Difficulties:

- Sampling the diffraction limit while covering the size of the halo requires a huge amount of pixels. Here: 4k x 4k.
- Need some scheme to 'compress' them.
- Variable contrast between central pixel and edge of PSF as a function of wavelength.
- Speckles.

Extraction of a catalogue

- Many tools to perform photometry.
- PSF photometry required?
- Need to do it automatically.
- StarFinder (Diolaiti et al. 2000):
 - Interactive
 - Determines PSF from image
 - Iterative procedure

Extraction of a catalogue

Help Quit

- Created a non-interactive version of StarFinder for use in pipeline.
- Main limitations:
 - No automation of the determination of the PSF from the image. Feed StarFinder the true PSF instead.
 - Cannot handle varying PSF as a function of position in the FoV, or star colour.
 - Cannot handle joint detection in multiple images.

Example

K-band

10 h integration

0.9 x 0.9 arcsec^2

DM = 26 mag

 $\langle \mu_V \rangle = 22 \text{ mag/arcsec}^2$

 $t_{exp} = 100 h$

 $FoV = 3.6 \times 3.6$ = 13 arcsec²

DM = 26 mag

 $\langle \mu_{\rm V} \rangle = 24 \text{ mag/arcsec}^2$

 $t_{exp} = 100 h$

 $FoV = 9.1 \times 9.1$ = 82 arcsec²

Original K-band

J-band PSF

PSF scale / 2

Original K-band

DM = 26 mag

 $\langle \mu_{\rm V} \rangle = 22 \text{ mag/arcsec}^2$

 $t_{exp} = 100 h$

 $FoV = 3.6 \times 3.6$ = 13 arcsec²

Original K-band

DM = 26 mag

 $\langle \mu_{\rm V} \rangle = 22 \text{ mag/arcsec}^2$

 $t_{exp} = 100 h$

 $FoV = 3.6 \times 3.6$ = 13 arcsec²

PSF --> J-band PSF

DM = 26 mag

 $\langle \mu_{\rm V} \rangle = 22 \text{ mag/arcsec}^2$

 $t_{exp} = 100 h$

 $FoV = 3.6 \times 3.6$ = 13 arcsec²

PSF --> scale / 2

DM = 26 mag

 $\langle \mu_{\rm V} \rangle = 22 \text{ mag/arcsec}^2$

 $t_{exp} = 100 h$

 $FoV = 3.6 \times 3.6$ = 13 arcsec²

Original K-band

DM = 26 mag

 $\langle \mu_{V} \rangle = 22 \text{ mag/arcsec}^2$

 $t_{exp} = 100 h$

 $FoV = 3.6 \times 3.6$ = 13 arcsec²

Original K-band

Required improvements

- Interpolation between isochrones
- How to deal with massive PSFs in image generation?
- How to include anisoplanatism?
- How to include joint detection of sources in multiple images?
- How to 'simulate' imperfect PSF estimation?