Imaging of High-z galaxies with the ELT

Simulations: methodology, plan and examples

P.Rosati, M.Puech, S.Toft (ESO)

DRM Workshop - May 21, 2008

Science Drives

- Obtain morphological information of primordial (z>4, up to ~10) galaxies to provide insights on mode and times scales of galaxy early assembly (sizes, SF densities, signs of interactions, AGN, etc.)
 - Primordial galaxy are expected to be knotty (lensing observations, local LBGs, theory) ⇒ need ~10 mas resolution
- Detection limits of most distant galaxies (deep fields, depth vs area), high-z SNe etc.
- Investigate competition/synergy with JWST (nearIR imaging) by identifying ELT niche

Single galaxy simulations: some examples

<u>Method</u>: M.Puech pipeline by projecting data cubes to produce continuum images ('Mass assembly' DRM case, Mathieu's talk)

Single galaxy simulations

 M_s^* galaxy at z=4, H_{AB} =24.3

Galaxy templates: HST/ACS images of z<~0.2 (late-type) galaxies

pixel size allows suitable spatial resolution at z>~4
H-band at z=4 probes rest-frame wl of ACS obs (no K-corr)

 $R_{H}(z,Ms)$ as in Spec simulations (Puech et al.)

Instrumemt params (default)

D=42m ExpTime=10h Pixel=4, 30 mas PSFs: MCAO (50% EE in 100mas pxl) GLAO (10% EE in 100mas, FWHM≈0.2") Sky=15.8 AB in H (continuum+OH), 10x lower between OH-lines (from Joe's plot/data) (incl. thermal bckgrd)

No. 1, 2008

LOCAL LYMAN BREAK GALAXY ANALOGS. I.

Overzier et al. 2008

ACS follow-up of "super compact UV luminous galaxies" (UVLGs) by Heckman et al. (from GALEX + SLOAN), local analogs of z~3 LBGs

	a	8			T_{exp} (s)				
GALAXY	(J2000.0)	(J2000.0)	z^{a}	UT DATE	FUV ₁₅₀	U_{330}	$H\alpha$	V_{606}	Z850
SDSS J005527.46-002148.7	00 55 27.46	-00 21 48.7	0.167	2006 Nov 1		2514	2302		2238
SDSS J032845.99+011150.8	03 28 45.99	+01 11 50.8	0.142	2006 Oct 7		2514	2302		2238
SDSS J040208.86-050642.0	04 02 08.86	-05 06 42.0	0.139	2006 Oct 31		2514	2302		2238
SDSS J080844.26+394852.4	08 08 44.26	+39 48 52.3	0.091	2006 Oct 30		2541	2356		2211
SDSS J092600.41+442736.1	09 26 00.40	+44 27 36.1	0.181	2006 Nov 6			2340		2274
SDSS J102613.97+484458.9	10 26 13.97	+48 44 58.9	0.160	2006 Nov 22		2565	2354		2289
SDSS J135355.90+664800.5	13 53 55.90	+66 48 00.5	0.198	2007 Jan 4		2661	2468		2334
SDSS J214500.25+011157.6	21 45 00.25	+01 11 57.3	0.204	2007 Jul 10	2514			3600	

LBG040208 z=4

ACS/HRC pxl at z=0.15 = 70pc \Box 10 mas at z=4 H-band at z=4 \Box 330 nm rest-frame ~M* at z=4 \Box H_{AB}=24.3

S/N maps

LBG032845 at z=4

ACS/HRC pxl at z=0.15 = 70pc \Box 10 mas at z=4 H-band at z=4 \Box 330 nm rest-frame ~M* at z=4 \Box H_{AB}=24.3

→
 →

maps

S / N

458

4526

Tadpole at z=4

ACS/WFC pxl at z=0.03 = 30pc \Box 4 mas at z=4 H-band at z=4 \Box 330 nm rest-frame (\neq obs 474 nm) ~M* at z=4 \Box H_{AB}=24.3

MCAO H-band

OH suppression...

Next...

- Need an engine to simulate realistic deep fields
- Requirements:
- Template galaxies should be constructed from real observations (typically HST images)
- Should be computationally efficient
- Simulations should match current observations in terms of number counts, colors, size distributions (z, type), number densities of most distant galaxies, etc.)
- Publicly available and easy to customize/upgrade
- We considered two tools: <u>BUCS (Bowuens et al.)</u>, <u>Skylens Meneghetti et al.</u>)

R.Bouwens, D.Magee: An Engine for Generating Realistic Imaging Data for Deep Galaxy Fields

"ELT" - 1 hr exposure K-band (FWHM=0.1", no GLAO PSF)

"Skylens": a shapelet-based imaging simulator

Meneghetti, Grazian et al. 2008 (AA, 482, 403)

- Shapelets decomposition of a set of templates galaxies extracted fro GOODS/UDF-like ACS fields
- Observed LFs(z) for 4-galaxy types (SEDs)+extrapolations
- Size vs mag empirical relation
- Galaxies morphologies are generated by shut coefficients in template library
- Reproduce number counts and si HST deep fields
- Used Real ACS, z-band (GOODS) 9x9 shapelet

Plan ahead

- Sanity/consistency checks on-going (ETC, ISAAC obs, MAD deep field)
- Adapting skylens (Meneghetti, Grazian) to ELT case
- Producing deep fields and analyze them (photometric accuracy, morphological params)
- Study trade-offs of instrumental params to maximize synergy with JWST/NIRCam (OH suppression techniques would help..)